

# Life Cycle Assessment Results:

Comparison of a Remanufactured Steelcase Avenir<sup>®</sup> Office System at Davies Office, Inc. to an OEM Office System

**FINAL REPORT** 

Date Prepared: November 17, 2016

#### **Prepared by:**

Center of Excellence in Advanced and Sustainable Manufacturing Golisano Institute for Sustainability Rochester Institute of Technology 190 Lomb Memorial Drive Rochester, NY 14623

#### **Prepared for:**

Davies Office, Inc. 40 Loudonville Road Albany, New York 12204



### **Acknowledgements and Disclaimers**

This project and the creation of this report was sponsored in part by the NYS Department of Economic Development (DED) and performed by the DED supported Rochester Institute of Technology (RIT) NYS Center of Excellence (COE) in Advanced and Sustainable Manufacturing. Any opinions, conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the NYS DED, RIT, or COE.

As described in detail in the text of the report, the Authors have made best efforts to ensure the accuracy and reliability of the data and assumptions necessary for the findings of this report. However, no warranties can be made to the accuracy of data or conclusions herein, and NYS DED, RIT or the COE disclaims any and all liability for any business actions taken or decisions made based on the contents of this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NYS DED, RIT, or the COE.



## **Executive Summary**

The Center of Excellence in Advanced & Sustainable Manufacturing (COE-ASM) at the Rochester Institute of Technology (RIT) was commissioned by Davies Office, Inc. to perform life cycle assessments on their remanufactured Steelcase Avenir<sup>®</sup> office workspace products and compare environmental impacts to new Steelcase products.

The goal of this study is to compare the environmental impacts of remanufactured office furniture products to those of the originally manufactured products (OEM). This study uses Life Cycle Assessment (LCA) methodologies to quantify the environmental impacts of each product holistically throughout the entire life cycle; from material extraction to manufacturing, transportation, use, and end-of-life. The impacts associated with each product are assessed by compiling an inventory of relevant energy and material inputs and environmental releases, evaluating the potential environmental impacts associated with these inputs and releases, and interpreting the results to help make more informed decisions.

Life cycle models in this assessment are constructed using the SimaPro 8.0.4 modelling software in conjunction with both the ecoinvent 3 database and actual collected product and process data. These models evaluate the environmental impacts of the remanufacturing life cycle as both independent of the OEM and dependent on, or combined with, the OEM. The independent life cycle method is used to indicate the side by side comparison of the OEM, Reman 1 and Reman 2 Office Systems based solely on the materials and processes used to make each office system component. The combined model is used to indicate how the average impact of the office system population is affected by multiple remanufacturing cycles compared to the OEM. The combined model aggregates the impacts for each product life cycle and distributes them evenly across all life cycles. The combined method thus shares the OEM burden across all life cycles.

The office system life cycles compared throughout this report are defined as:

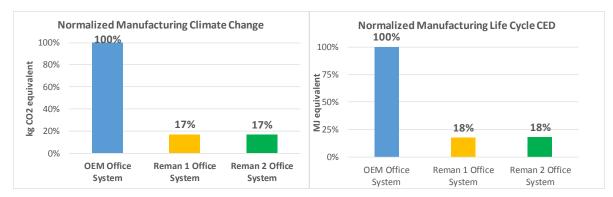
- OEM—The office system manufactured at Steelcase (SC), the original equipment manufacturer (OEM). This consisted of a divider panel, work surface, storage pedestal and a 2 drawer lateral file. The complete office system will be comprised of several work surfaces and panels along with one pedestal and one file. The complete office system is further defined in section 2.3.2.
- Reman 1—An office system that has been remanufactured by Davies from a Steelcase OEM office system
- Reman 2 (also referred to as Reman Avg.)—An office system remanufactured by Davies from a Steelcase office system that had already been previously remanufactured at least one time.

The study system boundary is set up to specifically compare the life cycle of a remanufactured office system to the OEM. The life cycle for reman and OEM is cradle to grave from raw material extraction and component production to end of life disposition. Use phase of both Davies and the OEM fall within the



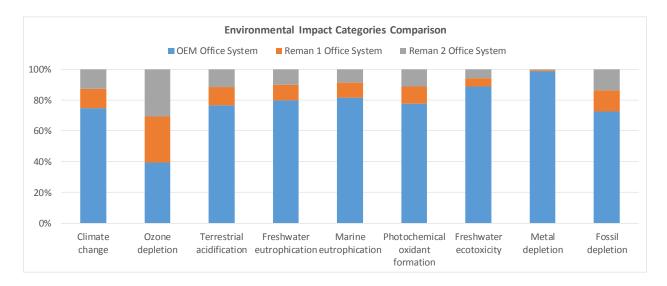
boundary, however it is assumed that both office systems will experience similar use and impacts therefore this phase of the life cycle is ignored. The primary focus was on the manufacturing stage of the office system products and the related inputs and outputs.

This life cycle assessment has been performed in accordance with ISO 14040:2006(E) *Environmental management—Life cycle assessment—Principles and framework* with a critical review performed by an LCA expert external to this project.


If the results of this LCA are to be disclosed to the public, ISO 14044 section 6.1 requires that "a panel of interested parties conduct critical reviews" on results and comparative claims.

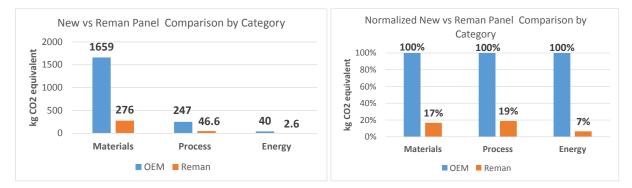
## **Significant Results**

The LCA models the life cycle impacts in 18 categories represented by the ReCiPe version 1.11, 2014 midpoint+ method, and Cumulative Energy Demand (CED) 1.09. Data from both the OEM LCA and Davies were modeled using ReCiPe version 1.11, 2014. This section highlights the significant results identified in the LCA.


#### OEM, Davies first and second remanufacturing life cycle compared (independent life cycle method)

The Davies first and second remanufacturing life cycle are the same and 17 percent of the OEM life cycle from cradle to gate for climate change impacts. During the first remanufacturing life cycle it is common for Davies to take OEM panels and storage components and resize them by decreasing the overall height, to promote a more open collaborative office space. Additional processing and scrap may be generated during Reman 1 though these contributions to the impacts are very small.




• The environmental impact for selected categories is significantly reduced for the Davies remanufactured office systems with a majority of the categories indicating reductions of greater than 80%. Only Ozone depletion saw the least reduction at 24% and 22% for reman 1 and reman 2 respectively.





#### Panel Component Remanufacturing compared to OEM (Combined life cycle method)

Analysis of the individual panel components of the defined office system reveals that remanufacturing of the panels significantly reduces the overall environmental impacts. The figures below represent the comparison of an OEM 65H x 48W panel to a remanufactured 65H x 48W panel (without indexing), for material use, processing and overall energy use. The comparison shows the remanufactured panel global warming impact for materials, process and energy is 17%, 19%, and 7% of the OEM respectively.





## **Table of Contents**

| Execu | ıtive Su | mmary3                                       |
|-------|----------|----------------------------------------------|
| Table | of Con   | tents6                                       |
| Table | of Figu  | ıres9                                        |
| 1.    | Introd   | uction12                                     |
|       | 1.1      | Life Cycle Assessment                        |
|       | 1.2      | Involved parties                             |
|       | 1.3      | LCA practitioner                             |
|       | 1.4      | Critical Review15                            |
| 2.    | Goal a   | nd Scope Definition17                        |
|       | 2.1      | Background17                                 |
|       | 2.2      | Goal                                         |
|       | 2.3      | Scope                                        |
|       | 2.3.1    | Product Description                          |
|       | 2.3.2    | 2 Functional Unit                            |
|       | 2.3.3    | 3 System Boundary                            |
|       | 2.3.4    | Boundary Exclusions                          |
|       | 2.3.5    | 5 Cutoff Criteria                            |
|       | 2.3.6    | 5 Limitations                                |
|       | 2.3.7    | 7 Allocation Procedures                      |
|       | 2.3.8    | 3 Software Tools                             |
|       | 2.3.9    | 9 Life cycle impact assessment methodology35 |
|       | 2.4      | Modeling Methodology                         |
|       | 2.4.1    | l Overview                                   |



|    | 2.4.2 OEM Office System                                          | 36 |
|----|------------------------------------------------------------------|----|
|    | 2.4.3 Davies Remanufactured System                               | 37 |
| 3. | Life Cycle Inventory                                             | 44 |
|    | 3.1 Inventory Data                                               | 44 |
|    | 3.1.1 Material                                                   | 44 |
|    | 3.1.2 Energy                                                     | 46 |
|    | 3.1.3 Packaging                                                  | 49 |
|    | 3.1.4 Transportation                                             | 50 |
|    | 3.1.5 End-of-Life (EOL) Management                               | 50 |
|    | 3.2 Assumptions and Limitations                                  | 51 |
|    | 3.3 Secondary Data: Life Cycle Assessment Databases              | 53 |
|    | 3.4 Data Quality                                                 |    |
|    | 3.4.1 Consistency, Precision, and Completeness                   | 54 |
|    | 3.4.2 Temporal, geographic, and technological representativeness | 54 |
|    | 3.4.3 Representativeness                                         | 55 |
|    | 3.4.4 Reproducibility                                            | 55 |
|    | 3.4.5 Source of Data                                             | 55 |
|    | 3.4.6 Data Uncertainty                                           | 55 |
| 4. | Life Cycle Impact Assessment                                     | 56 |
|    | 4.1 Life Cycle Impact Assessment Methods                         | 56 |
|    | 4.1.1 Recipe v1.11 (2014)                                        | 57 |
|    | 4.1.2 Cumulative Energy Demand 1.09                              | 59 |
|    | 4.2 Ecoinvent Database                                           | 60 |
|    | 4.3 LCIA Limitations                                             | 61 |



| 5.  | Results                                                        | . 62 |
|-----|----------------------------------------------------------------|------|
|     | 5.1 Cumulative Energy Demand (CED)                             | . 62 |
|     | 5.1.1 Office System Comparison (Independent life cycle method) | . 62 |
|     | 5.1.2 Divider Panel (Combined life cycle method)               | . 63 |
|     | 5.1.3 Work Surface (Combined life cycle method)                | . 64 |
|     | 5.1.4 Lateral File (Combined life cycle method)                | . 65 |
|     | 5.2 Environmental Impact                                       | . 65 |
|     | 5.2.1 Climate Change Midpoint                                  | . 66 |
|     | 5.2.2 Office System Comparison (Independent life cycle method) | .66  |
|     | 5.2.3 Divider Panel (Combined life cycle method)               | . 69 |
|     | 5.2.4 Work Surface (Combined life cycle method)                | . 75 |
|     | 5.2.5 Lateral File (Combined life cycle method)                | . 80 |
|     | 5.3 Sensitivity Analysis                                       | . 84 |
| 6.  | Conclusion                                                     | .93  |
| 7.  | Appendix A: Data Sources                                       | .96  |
| 8.  | Appendix B: Davies Process Description and Intensity           | .98  |
| 9.  | Appendix C: Office System Life Cycle Inventory Comparison      | 102  |
| 10. | Appendix D: Uncertainty Results                                | 132  |
| 11. | Critical Review Committee Approval                             | 133  |
| 12. | Critical Review Letter of Compliance                           | 149  |



## **Table of Figures**

| Figure 1: LCA Framework                                                             |
|-------------------------------------------------------------------------------------|
| Figure 2: Typical Davies remanufactured Steelcase Avenir <sup>®</sup> office system |
| Figure 3: Steelcase Avenir <sup>®</sup> Work surface staging for remanufacture      |
| Figure 4: Steelcase Avenir <sup>®</sup> Pedestal ready for remanufacture2           |
| Figure 5: Avenir <sup>®</sup> Panels after remanufacturing, ready for shipping22    |
| Figure 6: Davies Office Workspace layout23                                          |
| Figure 7: Wall panel2                                                               |
| Figure 8: Storage pedestals26                                                       |
| Figure 9: Lateral file unit                                                         |
| Figure 10: Work surface and supporting assembly2                                    |
| Figure 11: Steelcase OEM Life Cycle28                                               |
| Figure 12: Steelcase Answer Lateral File Process Flow                               |
| Figure 13: Steelcase Answer Panel Process Flow                                      |
| Figure 14: Steelcase Answer Work Surface Process Flow                               |
| Figure 15: Davies Closed Loop Remanufacturing Process                               |
| Figure 16: Remanufacturing Intake Process                                           |
| Figure 17: Work surface remanufacturing process                                     |
| Figure 18: Panel remanufacturing process40                                          |
| Figure 19: File and Pedestal Remanufacturing4                                       |
| Figure 20: Combined Life Cycle Model42                                              |
| Figure 21: Combined Life Cycle Model Calculation43                                  |



| Figure 22: Binding Resin Composition for 3M Fastbond 30NF (Used by Davies)        | 44 |
|-----------------------------------------------------------------------------------|----|
| Figure 23: Equipment Energy Rates from OEM LCA Applied to Davies Reman Processes  | 48 |
| Figure 24 Data Relationship within ReCiPe                                         | 59 |
| Figure 25: Cumulative Energy Demand (CED) in Ecoinvent, category and sub category | 60 |
| Figure 26: Office System Independent Live Cycle Comparison                        | 62 |
| Figure 27: Office System CED Comparison                                           | 63 |
| Figure 28: Combined Life Cycle Scenarios                                          | 64 |
| Figure 29: Divider Panel Life Cycle CED Comparison                                | 64 |
| Figure 30: Work Surface Life Cycle CED Comparison                                 | 65 |
| Figure 31: Lateral File Life Cycle CED Comparison                                 | 65 |
| Figure 32: ReCiPe Modeling of Climate Change                                      | 66 |
| Figure 33: Office System Climate Change Comparison                                | 67 |
| Figure 34: Office System Impact Comparison from ReCiPe Midpoint                   | 68 |
| Figure 35: Office System Life Cycle Ozone Depletion                               | 68 |
| Figure 36: Panel Life Cycle Climate Change Comparison                             | 69 |
| Figure 37: ReCiPe Midpoint Panel Life Cycle Impacts                               | 71 |
| Figure 38: New vs Reman Impact Contributions to Climate Change for Panels         | 71 |
| Figure 39: OEM Panel Climate Material and Process Contributors                    | 72 |
| Figure 40: EOL for Indexed Materials from Panel                                   | 73 |
| Figure 41: Davies Reman Panel Climate Material and Process Contributors           | 74 |
| Figure 42: Remanufactured Panel Life Cycle Impacts                                | 75 |
| Figure 43: Work Surface Life Cycle Climate Change Comparison                      | 75 |
| Figure 44: Work Surface Life Cycle Impacts                                        | 77 |



| Figure 45: OEM Work Surface Climate Change Impacts                    | 78 |
|-----------------------------------------------------------------------|----|
| Figure 46: Reman Work Surface Climate Change Impacts                  | 79 |
| Figure 47: Remanufactured Work Surface Environmental Impacts          | 80 |
| Figure 48: Lateral File Life Cycle Climate Change Comparison          | 81 |
| Figure 49: ReCiPe Midpoint Lateral File Life Cycle Impact             | 82 |
| Figure 50: OEM Lateral File Climate Change Impacts                    | 83 |
| Figure 51: Reman Lateral File Climate Change Impacts                  | 83 |
| Figure 52: Remanufactured File Environmental Impacts                  | 84 |
| Figure 53: Work Surface Sensitivity Comparison for Climate Change     | 87 |
| Figure 54: Panel Sensitivity Comparison for Climate Change            | 88 |
| Figure 55: Transportation Sensitivity Comparison for Climate Change   | 89 |
| Figure 56: ReCiPe Midpoint Energy Mix Comparison                      | 90 |
| Figure 57: Panel ReCiPe Midpoint Energy Mix Sensitivity by Life Cycle | 91 |
| Figure 58: Panel CED Energy Mix Sensitivity by Life Cycle             | 91 |
| Figure 59: Packaging Impact and Sensitivity                           | 92 |



## 1. Introduction

The Center of Excellence in Advanced & Sustainable Manufacturing (COE-ASM) at the Rochester Institute of Technology (RIT) was asked by Davies Office Inc. to compare the environmental impacts of Davies' remanufactured office workspace product system to an original equipment manufacturer (OEM) office workspace product system. The office workspace system is composed of divider panels, work surfaces and storage from a pedestal and lateral file. Quantities and styles of each may vary from system to system since there can be many different sized office systems. This system is fully defined in section 2.3.2. The OEM for the Avenir® office system upon which this study focuses is Steelcase, Incorporated. Davies remanufactures several major OEM office system product lines and offers highly customized options including ergonomic enhancements and modern styling options that may not be available from other office furniture providers.

Remanufacturing is a process that restores a worn and discarded product to a like-new condition so that it can be sold back into the market. The restoration is a high-quality process through which products are systematically disassembled, cleaned, and inspected for wear and/or degradation. Degraded or nonfunctional components are replaced, and the product is reassembled. By recovering and reusing viable product components, the materials and energy used to create the original product are preserved, allowing further value to be extracted from these original inputs.<sup>1</sup> Ultimately, by avoiding the need to reproduce those materials and components, remanufacturing serves to decrease the total embodied energy and material footprint of a product, reducing its overall environmental footprints.<sup>1</sup>

## 1.1 Life Cycle Assessment

The COE-ASM team investigated the environmental impacts of remanufacturing office workspace products by using established life cycle assessment (LCA) methodology. LCA is a tool used to quantify the environmental impacts associated with all phases of a product or process life from cradle-to-grave; from material extraction to manufacturing, transportation, use, and, ultimately, through end-of-life management. LCA helps identify environmental impacts by compiling an inventory of energy and material inputs and environmental releases, evaluating the potential impacts associated with those inputs and

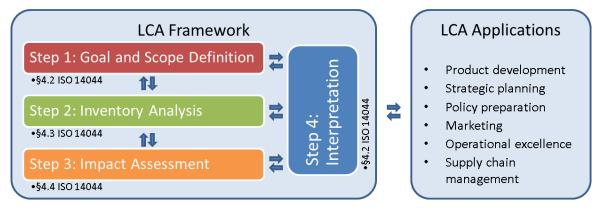
<sup>&</sup>lt;sup>1</sup> Hilton, B & Winnebeck, K (2011) Life Cycle Assessment Results: Energy and Environmental Impact comparison of the Hewlett Packard LaserJet !1338a (38A) Toner Cartridge and the Sustainable Earth by Staples<sup>™</sup> Remanufactured Counterpart.

http://www.staplesadvantage.com/sp/seb\_lca/assets/pdf/Staples\_38A\_Toner\_Cartridge\_LCA\_PUBLIC\_Final\_Repo rt\_9-13-12.pdf



releases, and then interpreting the results to help stakeholders make more informed decisions (reference ISO 14040:2006).

LCA results are useful for communicating the environmental impact of a product both internally and externally. Internally, LCA results enable identification of operations or materials that contribute significant environmental impacts, allowing opportunities for improvement to be targeted. Externally, LCA results can be used to validate marketing claims or compare the environmental impact of products between multiple manufacturers.


A Life Cycle Assessment is executed in four (4) distinct phases: (ISO 14040, 14044)

**Step 1**: Definition of goal and scope—identify the LCA's purpose, the products of study, and determine the system boundaries (i.e. what is and is not included in the study). See **Section 2**.

**Step 2**: Life-cycle inventory (LCI)—Quantify the energy and raw material inputs and environmental releases associated with each life cycle phase. See **Section 3**.

**Step 3**: Impact assessment (LCIA)—Assess impacts on human health and the environment. See **Section 4**.

**Step 4**: Result interpretation—Evaluate opportunities to reduce energy, material inputs, or environmental impacts at each stage of the product life-cycle. See **Section 5**.





#### 1.2 Involved parties

Execution of this project involved technical staff from the Golisano Institute for Sustainability (GIS) at the Rochester Institute of Technology's (RIT) Center of Excellence in Advanced & Sustainable Manufacturing (COE-ASM), and staff at Davies Office Inc., (Davies). Davies granted access to its remanufacturing facility in Albany, NY to GIS researchers and provided the necessary primary data and material supplier contact information. GIS technical staff collected data and built representative models of the remanufacturing



process using SimaPro 8 LCA software. These models were used to perform comparative analyses against OEM Steelcase products.

The OEM model relied on data from an LCA that was conducted on Steelcase office products which are similar to the ones analyzed during this study.<sup>2</sup> The OEM model was built utilizing the relevant material data, energy and production data provided in the Steelcase LCA. Material quantities in each component were derived from data collected at Davies. Material data quantities for panels was also acquired from a previous study conducted by the Center for Sustainable Production (CSP) at RIT.<sup>3</sup> All other process, energy and material data was derived from the Ecoinvent 3 materials and process database.

#### 1.3 LCA practitioner

This project was completed by life cycle analysts Allen Luccitti and Dr. Mark Krystofik from the Golisano Institute for Sustainability (GIS) at the Rochester Institute of Technology (RIT) and supported by funding from the Center of Excellence in Advanced & Sustainable Manufacturing (COE-ASM) within GIS. Mr. Luccitti served as the primary analyst and Dr. Krystofik served an advisory role on the project.

Technical staff and faculty within GIS are certified life cycle assessment professionals, from the American Center for Life Cycle Assessment (ACLCA), and provide expertise and industry application of LCA methodologies. GIS conducts LCAs in accordance with ISO 14000 series standards for a broad range of industries, from the transportation sector to medical device manufacturers to office products. GIS may also function as an independent third-party critical reviewer, providing a non-biased, independent evaluation of the methodology and interpretation of others' LCA results. These LCA results are used by clients to make informed decisions for strategic planning, priority identification, and product or process design or redesign. In addition, the LCA process enables companies to identify opportunities to improve environmental performance, and thereby supports competitiveness in the green marketplace.

 Allen Luccitti, Senior Staff Engineer, Golisano Institute for Sustainability (GIS). Mr. Luccitti is a member of the Life Cycle Assessment team at GIS, assisting with ISO 14040 compliant LCA's and is a key resource for New York State Pollution Prevention Institute's (NYSP2I) Green Technology Acceleration Center and Sustainable Supply Chain and Technology Programs. Mr. Luccitti holds a B.S./M.E. in Mechanical Engineering from RIT.

<sup>&</sup>lt;sup>2</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005.

<sup>&</sup>lt;sup>3</sup> CSP Report, Material Analysis of Davies Remanufactured Steelcase Avenir<sup>®</sup> and Steelcase Series 9000 Panels, 2011.



 Mark Krystofik, Ph.D., Senior Program Manager, Golisano Institute for Sustainability, Dr. Mark Krystofik is Senior Program Manager at the Golisano Institute for Sustainability (GIS) at Rochester Institute of Technology (RIT), where he is responsible for program management and research and development for the Center of Excellence in Advanced and Sustainable Manufacturing (COE-ASM). COE-ASM has a primary focus of assisting start-ups and established companies with research supporting the development of more sustainable products and processes, and is closely linked to RIT's involvement in the national Digital Manufacturing Design and Innovation Institute (DMDII). Prior to joining RIT, Dr. Krystofik's 20+ years of prior work experience in industry includes product development, design for manufacturing, manufacturing process development, strategic planning and operations management.

#### 1.4 Critical Review

This life cycle assessment has been performed in accordance with ISO 14040:2006(E) *Environmental management—Life cycle assessment—Principles and framework*. A critical review was performed by an independent panel of experts and interested parties. Panel constituents were as follows:

- Kate Winnebeck, Chair—LCA Certified Professional, Senior Environmental Health & Safety Specialist, New York State Pollution Prevention institute (NYSP2I). Research focus includes life cycle assessment and modeling of health hazards and environmental impacts.
- Dr. Anahita Williamson, Panelist—Dr. Williamson has a strong background and extensive experience in the field of environmental engineering, including manufacturing process modification for improved material recovery and reuse, design for the environment and life-cycle assessment. She served as a senior engineer at Xerox Corporation where she assisted in implementing companywide sustainability and pollution prevention processes. Williamson led numerous teams at Xerox Corporation in defining environmental opportunities within processes/products by optimizing complex systems. She also has extensive experience in utilizing life-cycle assessment (LCA) methodology for evaluating the environmental performance of a process/product over its entire life-cycle and has performed multiple LCAs throughout her career. In 2012, Dr. Williamson was recognized with the Environmental Quality Award through the Environmental Protection Agency (EPA) and in 2013 with RIT's Principal Investigator Millionaire Award.

Dr. Williamson is a Lean Six Sigma certified Greenbelt. She understands the importance of applying lean thinking when implementing industrial solutions. Dr. Williamson also has multiple peer-reviewed publications and has presented at numerous international and national conferences on topics including cleaner production, green engineering, the acceleration of green



technologies and sustainable supply chain. Dr. Williamson holds a B.S. in Chemical Engineering and M.S. and Ph.D. in Civil and Environmental engineering, all from Clarkson University

• Thaddeus Owen, Panelist— Sr. Engineer, Sustainability, Herman Miller and Owner OTEC LLC

Mr. Owen is Herman Miller's Sr. Sustainability Engineer and life cycle assessment leader. Since 2007, Mr. Owen has helped lead sustainable product design as part of Herman Miller's Sustainability team and has participated in drafting numerous national and international sustainability standards committees. He is passionate about health and wellness and works to create safe and healthy products including consulting to public and private companies on LCA, sustainability and greenhouse gas accounting.

Mr. Owen holds a BS in Chemical Engineering from Clarkson University, an MS in Holistic Nutrition, Personal Training and Sports Nutrition Certifications and studies how the environment impacts human health and performance.

 Roy Green, Panelist— Mr. Green has life cycle assessment and SimaPro training through Earthshift and has conducted internal life cycle assessments in his role at HBF and Gunlocke. In addition, Mr. Green has served on the Business Institute Furniture Manufacturer Association (BIFMA) workgroups for product category rule (PCR) development and assisted in the development of the BIFMA PCR's for Office Furniture Workspace Products: UNCPC 3814 as well as assisted in the revision to BIFMA's PCR for Seating: UNCPC 3811 and BIFMA's PCR for Storage: UNCPC:3812

This Life Cycle Assessment Report is intended for public dissemination, may be disclosed to the public subject to the terms and conditions discussed in the Acknowledgements and Disclaimers section.



## 2. Goal and Scope Definition

#### 2.1 Background

Founded in 1948 and headquartered in Albany, NY, Davies Office, Inc. is the largest independent office furniture remanufacturer in the United States. Davies receives various brands of office furniture products at the end of their useful lives from customers across the United States who seek to update their office space with newer styles and modern designs.

Davies offers a full line of office furniture products, including cubicles, workstations, panel systems, desks, tables, chairs, lateral files, and other workspace equipment. The company remanufactures major original equipment manufacturer (OEM) product lines, and offers customized options that may not be available from other office furniture providers. Davies is a full service provider offering both new, used, and refurbished products and innovative services that enable an affordable, more environmentally benign office furniture solution.

To position the LCA within existing and accepted framework, COE-ASM practitioners surveyed existing Product Category Rules (PCRs) for office furniture and workspace products. In accordance with the ISO 14025:2006 standard, the PCR is used to define the goal, scope, system boundary, functional unit, and impact methods used in life cycle assessments. A review of established guidelines in this area facilitated effective outlining and configuration of the study system.

There are three (3) existing PCRs relevant to office furniture products:

- 1. UNCPC 3812 & 3814: Other Furniture Used in Offices and Other Furniture, version 1.1, valid through December 14, 2017
- 2. BIFMA PCR for Storage: UNCPC 3812, valid through June 10, 2018, NSF International
- 3. BIFMA PCR for Office Furniture Workspace Products: UNCPC 3814, NSF International , valid through August 6, 2020

This LCA draws from the *BIFMA PCR for Office Furniture Workspace Products,* #3 above, which itself builds upon the preceding two outlines. This guideline works to better define the system boundary and functional unit, where other PCRs have purposefully left the functional unit definition open ended due to the diversity of the industry.<sup>4</sup> This new PCR provides a more defined functional unit that which will allow for a more repeatable analysis. This functional unit is defined as one square meter (1m<sup>2</sup>) of workspace for a period of 10 years. This refers to the area occupied by the office product.

<sup>&</sup>lt;sup>4</sup> National Center for Sustainability Standards (2014). *BIFMA PCR for Office Furniture Workspace Products: UNCPC 3814.* Web. Available from: <u>http://www.nsf.org/newsroom\_pdf/su\_bifma\_office\_furniture\_workspace\_products\_pcr.pdf</u>



It is important to note that the BIFMA PCR was not intended for a comparative assessment, and not designed with remanufacturing in mind. Therefore, it was only used as a general guide for this study and not followed explicitly. Table 1 provides reference to areas of the PCR and if they were explicitly followed or used only as a guide.

| PCR Category                                                                                                          | General Category Metric/Description                                                                                                                                                                                                                                                                 | Followed in Study<br>(Y/N/ or Guide<br>only) |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Goal and Scope                                                                                                        | The scope of the LCA shall conform to the ISO 14040 series (ISO 14044 Section 4.2.3.1) and be from cradle-to-grave.                                                                                                                                                                                 | Yes                                          |
| Product<br>Description                                                                                                | <ul> <li>Photo Image of product(s)</li> </ul>                                                                                                                                                                                                                                                       |                                              |
| Functional Unit                                                                                                       | The functional unit shall be one square meter (1m <sup>2</sup> ) of workspace for a period of 10 years                                                                                                                                                                                              | Guide Only                                   |
| System Boundary• Material acquisition and processing<br>• Production<br>• Distribution, storage, use<br>• End of Life |                                                                                                                                                                                                                                                                                                     | Guide Only                                   |
| Allocation Rules                                                                                                      | where possible, allocation should be avoided by dividing<br>unit processes into two or more sub-processes (as specified<br>in ISO 14044, Section 4.3.4, Allocation                                                                                                                                  |                                              |
| Sensitivity<br>Analysis                                                                                               | <ul> <li>Sensitivity analyses shall be performed when allocation is used</li> <li>If proxy data representing more than 1% of the mass or energy of the system is used, a sensitivity analysis shall be performed using a range from half to twice the reference flow of the unit process</li> </ul> | Guide Only                                   |
| LCIA Method                                                                                                           | • TRACI 2.1                                                                                                                                                                                                                                                                                         | Guide Only                                   |

Table 1: PCR Categories and application in study



## 2.2 Goal

The goal of this study is a comparative assertion of the environmental impacts of remanufactured Steelcase Avenir<sup>®</sup> office furniture workspace products made by Davies Office Furniture to equivalent OEM Steelcase Avenir<sup>®</sup> products through the use of a Life Cycle Assessment (LCA). This study utilized the LCA conducted on a Steelcase Answer (Answer) office products to develop an OEM model for the Steelcase Avenir<sup>®</sup> (Avenir<sup>®</sup>). Production process, energy, transportation, and component material content along with production location were used from that study. This data supplemented the primary data collected at Davies from the Steelcase Avenir<sup>®</sup> cores. A representative model for the OEM Avenir<sup>®</sup> was built with from this data for the comparison. Both the Avenir<sup>®</sup> and Answer are similar with respect to the office system products. The work surfaces for both use a particle board core with laminated covering and PVC edge. The panels both have a steel frame, insulation, fabric covering, and trim plates. The lateral file and pedestal are both primarily steel and powder coated. It is assumed that since the Answer and Avenir<sup>®</sup> both have similar component composition that the production process for the Answer will also be similar to the Avenir<sup>®</sup>.

Products of focus include a work surface, divider/wall panels, lateral file, and a storage pedestal. Davies hopes that results of this study will illustrate the environmental benefits of remanufacturing and the ability to bring these products to like or better than new conditions.<sup>5</sup> Results of this study are also intended to strengthen consumer confidence in a remanufactured product's value and quality as a whole.

This life cycle assessment has been performed in accordance with ISO standards 14040:2006(E) *Environmental Management—Life cycle assessment—Principles and framework*, and 14044:2006(E) *Environmental Management—Life cycle assessment—Requirements and guidelines*. Critical reviews have been performed by an independent panel of experts and interested parties.

The primary intended audience of this report is Davies Office. Office and furniture industry stakeholders, the educational and research community, and the general public may also benefit from these analyses. This life cycle assessment is intended for public dissemination, and may be disclosed to the public subject to the terms and conditions set forth in the Acknowledgements and Disclaimers section, and all sensitive

<sup>&</sup>lt;sup>5</sup> R. T. Lund and W. M. Hauser, "Remanufacturing - an American perspective," Responsive Manufacturing - Green Manufacturing (ICRM 2010), 5th International Conference on, Ningbo, 2010, pp. 1-6. doi: 10.1049/cp.2010.0404



and confidential information such as intended only for internal use at Davies has been removed from this report.

#### 2.3 Scope

This section defines the office system products included in the study, the system boundaries, functional unit and assessment methodology.

#### 2.3.1 Product Description

This assessment focuses on a conventional office cubicle workspace system that includes a work surface, lateral file storage, storage pedestal, and a wall panel system. The OEM product brand and family identified for this assessment is the Steelcase Avenir<sup>®</sup>. Figure 2 illustrates the layout of a conventional office system in its assembled form. Figures 3 through 5 illustrate the constituent components of the workspace system.

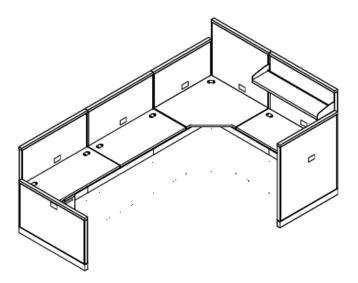



Figure 2: Typical Davies remanufactured Steelcase Avenir® office system

#### Work Surface

Work surfaces considered in this study consist of three (3) rectangular (straight) surfaces, as seen in the foreground of Figure 3, and one (1) corner work surface, seen in the background. These work surfaces are Steelcase Avenir<sup>®</sup> work surfaces recovered for remanufacturing from various companies. Both the OEM and Davies remanufactured work surface use a laminate covering over a particle board core, with poly



vinyl chloride (PVC) edge banding. Davies can, not only match existing styles but offer additional styles that may not be available from the OEM.



Figure 3: Steelcase Avenir<sup>®</sup> Work surface staging for remanufacture

#### Lateral File & Pedestal

This study considers one (1) of each type of file storage: a two- (2)-drawer lateral file and a three- (3)-drawer pedestal, both Steelcase Avenir<sup>®</sup>.



Figure 4: Steelcase Avenir® Pedestal ready for remanufacture



#### Panel

The defined office system contains seven (7) wall panels of four (four) different sizes, defined in Table 2.



Figure 5: Avenir<sup>®</sup> Panels after remanufacturing, ready for shipping

#### 2.3.2 Functional Unit

The functional unit is defined as one (1) complete office furniture workspace system that will support one (1) intended worker with a service life of ten (10) years.

The functional unit is normalized to one square meter (1m<sup>2</sup>) of occupied space. The occupied space of the office system being analyzed is measured to be 8.729m<sup>2</sup>. The analysis compared the Davies Avenir<sup>®</sup> office system to an equivalent OEM Avenir<sup>®</sup> layout with equal number of components. Davies offers a lifetime warranty on all remanufactured products, and could be expected that an individual remanufactured life cycle is greater than 10 years. Davies has indicated that their products can typically remain in service for greater than 10 years and that retirement of the office furniture is not due to failure but to changing needs and requirements of customers.<sup>6</sup> However, based on the PCR guideline, product service life is considered to be 10 years.

<sup>&</sup>lt;sup>6</sup> Onsite meeting with Bill Davies and Mike Nguyen.



Modern office system components often contain electrical and communication functionalities such as task lights, electrical outlets and wiring, Ethernet and phone jacks and wiring and related hardware. These components and features are excluded from the current study due to the large variability of configurations.

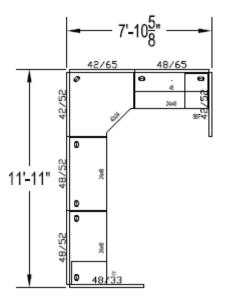



Figure 6: Davies Office Workspace layout

Even though the functional unit is defined as one (1) *complete* office workspace system, this assessment also considers comparisons of individual remanufactured system components to their OEM counterparts. This level of comparison enables a more complete understanding of the contribution from each component to total life cycle impacts.

Table 2 outlines the constituent elements of one (1) complete office system.



| ITEM                              | DIMENSION (INCHES) | QUANTITY |
|-----------------------------------|--------------------|----------|
| WORK SURFACE                      | 24W x 48L x 1.5T   | 3        |
| WORK SURFACE                      | 24W x 42L x 1.5T   | 1        |
| PANEL                             | 48w x 52h          | 2        |
| PANEL                             | 42W x 65H          | 1        |
| PANEL                             | 48W x 65H          | 1        |
| PANEL                             | 48w x 33h          | 1        |
| PANEL                             | 42W x 52H          | 2        |
| PEDESTAL 3 DRAWER (BOX/BOX/FILE)  | 15W x 24D x 28H    | 1        |
| LATERAL FILE 2 DRAWER (FILE/FILE) | 36W x 18D x 28H    | 1        |

Table 2: Functional Unit Office System Components <sup>7</sup>

<sup>&</sup>lt;sup>7</sup> Office system layout and configuration provided by Mike Nguyen at Davies for a specific customer/job.



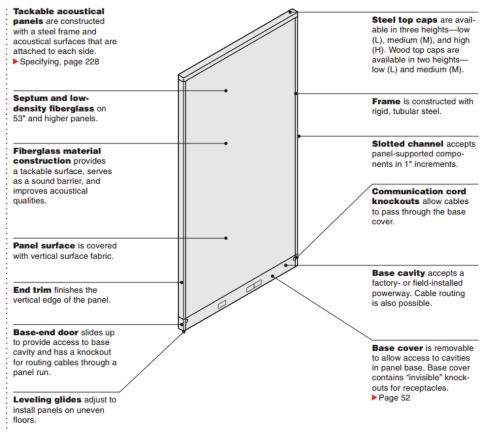
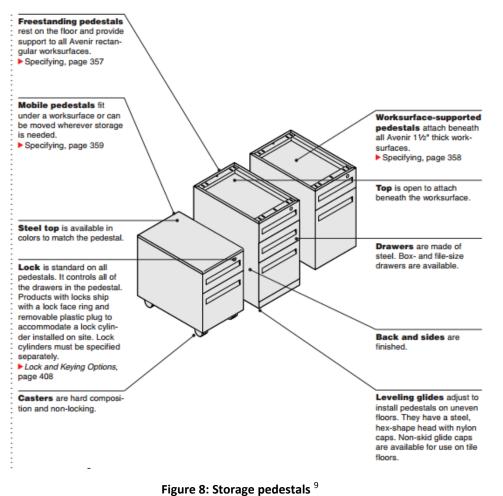




Figure 7: Wall panel<sup>8</sup>

<sup>8</sup> Avenir<sup>®</sup> Systems Furniture Specification guide, 2003 pp.9,219





<sup>&</sup>lt;sup>9</sup> Avenir<sup>®</sup> Systems Furniture Specification guide, 2003 pp.153,351



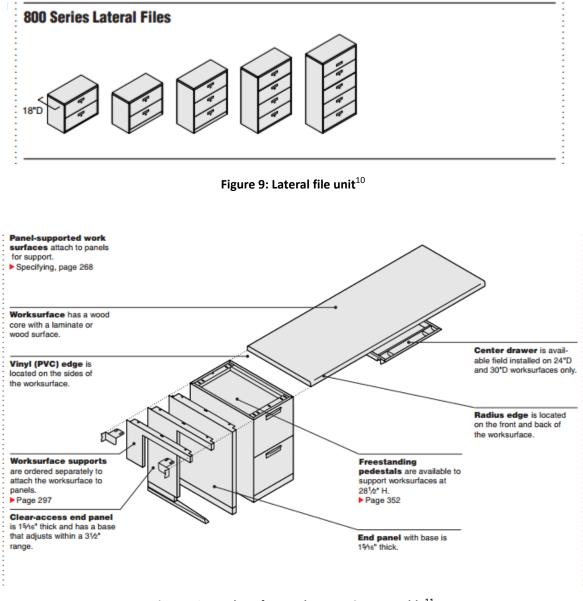



Figure 10: Work surface and supporting assembly<sup>11</sup>

<sup>&</sup>lt;sup>10</sup> Avenir<sup>®</sup> Systems Furniture Specification guide, 2003 pp.153,351

<sup>&</sup>lt;sup>11</sup> Avenir<sup>®</sup> Systems Furniture Specification guide, 2003 pp.71,267



#### 2.3.3 System Boundary

The OEM Steelcase lifecycle is illustrated in Figure 11, starting with the production of the raw materials. The finished materials are then shipped to Steelcase for final production and assembly of the components. Once complete, the office system is shipped to the customer for use. At the end of the office systems useful life it is sent to the municipal solid waste stream (MSW) where some materials that can be separated go through recycling. The current model assumes only the steel material in the panel frame and file storage go to recycling, all other materials are sent to landfill.

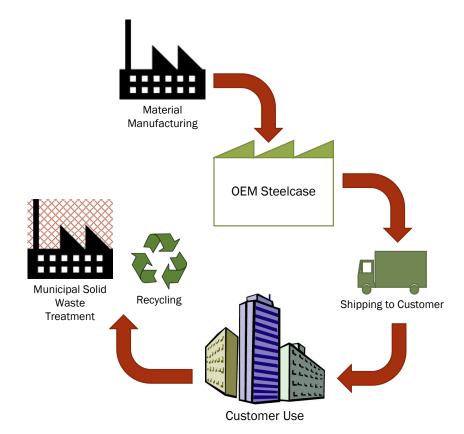



Figure 11: Steelcase OEM Life Cycle

The individual component process flows were adopted from (Dietz 2005) study and is assumed that these processes are representative of the Avenir<sup>®</sup> process flow. Portions of the Steelcase Answer process flows may vary from Avenir<sup>®</sup> based on the Avenir<sup>®</sup> material content. The Answer work surface had steel legs and a process for the production of these legs is included in the Answer process flow, while the Avenir<sup>®</sup> does not have these support legs. Variations between the Answer and Avenir<sup>®</sup> are noted in each flow diagram, Figure 12, Figure 13, and Figure 14.



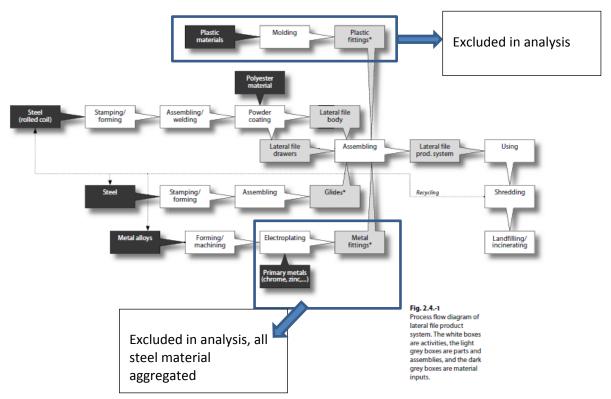



Figure 12: Steelcase Answer Lateral File Process Flow<sup>12</sup>

The lateral file process flow illustrated in Figure 12 for the Steelcase Answer. It can be assumed that this is representative of the Avenir<sup>®</sup> process. Eliminated from the evaluation are the plastic materials and electroplating.

<sup>12</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005



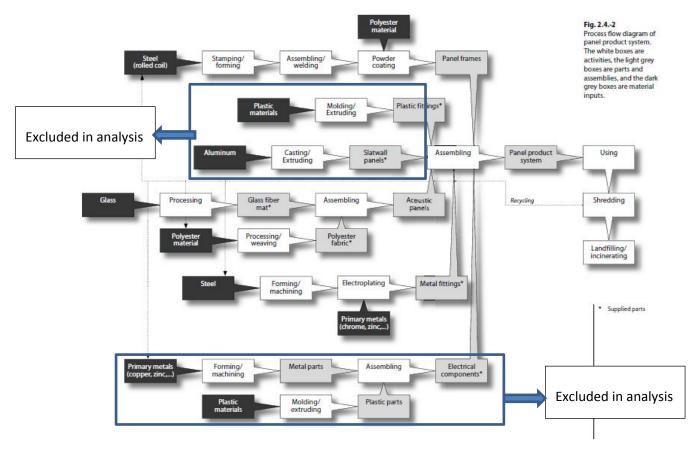
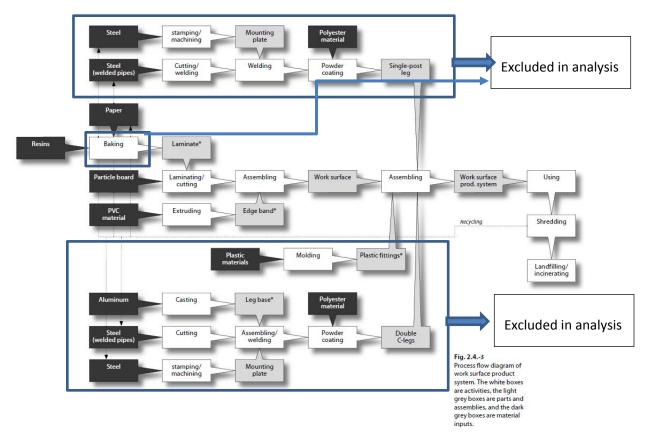




Figure 13: Steelcase Answer Panel Process Flow<sup>13</sup>

The Steelcase Answer panel process flow illustrated in Figure 13 is assumed to be representative of the Avenir<sup>®</sup> process, excluding the specific components highlighted. The electrical and plastic components were excluded along with the aluminum slatwall which were not observed in the Avenir<sup>®</sup>.

<sup>&</sup>lt;sup>13</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005





#### Figure 14: Steelcase Answer Work Surface Process Flow<sup>14</sup>

The Steelcase Answer Work Surface process flow illustrated in Figure 14 is assumed to be representative of the Avenir<sup>®</sup> process flow, excluding the highlighted materials and processes. The Avenir<sup>®</sup> did not have the support legs and hardware that are part of the Answer work surface.

The Davies remanufactured office workspace product life cycle was modeled as a closed loop system. In this system, Davies recovers the office workspace products to be remanufactured directly from customers. Equipment is then shipped back directly to the Davies facility in Albany, NY, where Davies

<sup>&</sup>lt;sup>14</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005



remanufactures them to like- or better-than-new condition.<sup>15</sup> Davies is able to upgrade the office system components with current power and communication functionality that may not have been available previously. The remanufactured office system is then transported back to the customer for installation and use. This is illustrated in Figure 15 below.

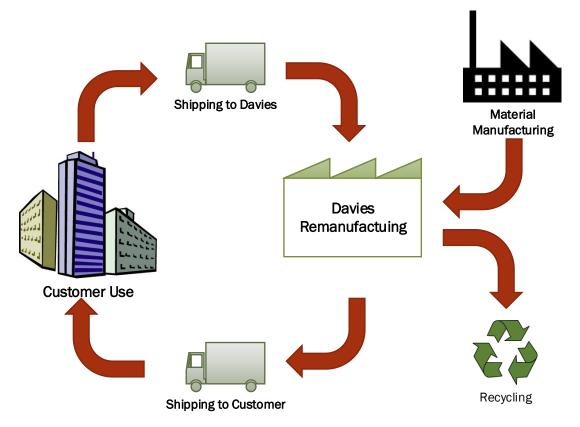



Figure 15: Davies Closed Loop Remanufacturing Process

This study considers the complete life cycle of the remanufactured office system from "cradle" to "grave" wherein the "cradle" is defined as the point at which an OEM office system is retired (at the end of its first useful life) and acquired by Davies, and the "grave" is the point at which the remanufactured system is retired at the end of its own useful life. The full life cycle inventory is available in Appendix C.

<sup>&</sup>lt;sup>15</sup> R. T. Lund and W. M. Hauser, "Remanufacturing - an American perspective," *Responsive Manufacturing - Green Manufacturing (ICRM 2010), 5th International Conference on,* Ningbo, 2010, pp. 1-6. doi: 10.1049/cp.2010.0404



#### 2.3.4 Boundary Exclusions

Because office workspace equipment does not itself consume energy or create emissions during its use, use phase impacts of the OEM and remanufactured office workspace systems are assumed to be equivalent, and are therefore excluded from the boundary of consideration. Any additional features added to the OEM or remanufactured office system such as task lighting or electrical outlets are assumed outside the scope of this analysis and therefore excluded. Data for the maintenance, upkeep, and warranty repair of the office system—which are assumed to be the only potentially impactful contributors to this phase—are not readily available for either system. Irrespective of this data scarcity, these impacts are also considered to be equivalent between the two systems, as the remanufactured system is intended to achieve equivalent life cycle performance to the OEM and would therefore require effectively equivalent levels of maintenance and repair. A study of the remanufacturing of automotive engines to original equipment specifications, show they have equivalent performance and durability to the OEM engines.<sup>16</sup> An office system in comparison with an automotive engine is more passive with minimal moving parts such as the file drawers, and will not be subjected to the same type of use. Thus it can be assumed that the remanufactured office system will easily meet OEM performance requirements considering it will not be subjected to harsh operational conditions. As a result, these use phase impacts are collectively excluded from this study.

The remanufacturing of the office components does not include or account for all of the processes required for the OEM system components. One significant process difference between the OEM and reman is that reman does not require steel processing into the final components. This processing, which includes metal stamping and forming, would be for the creation of the panel frames, file and pedestal housing and drawers.

#### 2.3.5 Cutoff Criteria

A cut-off criterion has been applied in this analysis where any materials or energy that constitute less than one (1) percent of the total mass or energy may be excluded from this analysis. Any data that is neglected or rejected outside of the system boundaries is justified with individual explanations in Section 3.2: Assumptions and Limitations. No environmental cutoffs are applied.

<sup>&</sup>lt;sup>16</sup> Smith, V. M. and Keoleian, G. A. (2004), The Value of Remanufactured Engines: Life-Cycle Environmental and Economic Perspectives. Journal of Industrial Ecology, 8: 193–221. doi:10.1162/1088198041269463



#### 2.3.6 Limitations

The results of this assessment should not be considered the only source of environmental information with respect to the identified products and processes. As common with all LCA studies, there are limits to data quality, especially for the production of upstream materials, where information may vary widely between company, location, and data source. The LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risk. As a result, this LCA represents only the Davies remanufactured Steelcase Avenir<sup>®</sup> office system described in the preceding sections of this report. Other remanufactured office products and the processes by which they are made may have environmental impacts not discussed here.

The lack of current primary OEM Steelcase Avenir<sup>®</sup> data is one limitation that is important to note. The OEM Steelcase LCA referenced in this study is approximately 11 years old at the time of this report, therefore current conditions and practices for the OEM may result in impacts that are greater or less than reported in the OEM study. This can be attributed to improved process efficiencies, change in manufacturing location, or change in materials used.

| Limitation<br>ID | Limitation Description                                                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | OEM Avenir <sup>®</sup> production data not readily available, production data for Steelcase Answer office products used from (Dietz 2005) Study                        |
| 2                | OEM process and manufacturing data approximately 11 years old, improvements in efficiency, and changes in manufacturing location may result in variation of the impacts |
| 3                | Current OEM packaging materials and practices are unknown                                                                                                               |
| 4                | Production energy mix may be different due to changes in manufacturing location                                                                                         |

**Table 3: Limitations** 

#### 2.3.7 Allocation Procedures

No manufacturing operations are shared between the defined office workspace system in this study and other products not considered in this study; allocation of process inputs and resultant impacts are therefore not items of concern. The processes identified were only observed for the components in this study, even though Davies does remanufacture other products none were remanufactured at that time, and therefore the total process intensity can be allocated solely to the remanufactured products in this study.

Overhead energy was allocated to a specific manufacturing process within the facility. Davies has three utility service areas: (1) main production and warehouse; (2) showroom, metal manufacturing, offices; and (3) a retail outlet center. An overhead energy rate for each area was determined based on billed



energy use for one billing cycle in August of 2015, and the combined square footage of each area. Table 4 outlines each area and the associated overhead for electricity and natural gas.

|                           |               | Electricity Overhead | Natural Gas Overhead |
|---------------------------|---------------|----------------------|----------------------|
| Utility Service Area      | Total<br>sqft | kWh/sqft/hr          | kWh/sqft/hr          |
| Main Production/Warehouse | 205,883       | 0.00043              | 8.24E-05             |
| Showroom/Metal/Office     | 40,468        | 0.00072              | 2.89E-03             |
| Outlet                    | 6,647         | 0.00098              | NA                   |

#### Table 4: Overhead Rates

Overhead values are allocated based on the percentage of total operational area occupied and the amount of time it takes to complete each process. Process time values for each system component were measured in detailed evaluations of ongoing remanufacturing processes to ensure relevance and accuracy.

OEM energy allocation is defined in section 3.1.2.

#### 2.3.8 Software Tools

SimaPro 8.0.4.26 modeling software was used to calculate, analyze, and compare the environmental impacts of each system. SimaPro is a commercially available life cycle assessment tool that integrates peer-reviewed data and environmental impact methodologies to assist with modeling the environmental impact of a life cycle. This software was used in conjunction with the contemporary and peer-reviewed Ecoinvent 3 material and process database. Entries within this database reflect the real-world life cycle impacts of a material or process.

#### 2.3.9 Life cycle impact assessment methodology

This project used the ReCiPe version 1.11, 2014 midpoint+ method, and Cumulative Energy Demand 1.09 impact assessment library.

#### 2.4 Modeling Methodology

#### 2.4.1 Overview

New office furniture systems introduced to the market reflect the design needs and style preferences of present business users. These preferences are, however, inevitably susceptible to variation over time. Accordingly, Davies current remanufacturing methods reflect a notable shift in customer design preferences. Older office equipment styles (e.g., prior to year 2000) featured tall panel dividers in a cubicle design. Contemporary office culture, however, encourages a more open and collaborative workspace. As



a result, much of Davies' focus is on the resizing (size reduction) of office panels, lateral files, and storage units by cutting them down; a process Davies refers to as "indexing."<sup>17</sup>

Davies has been able to capitalize on this shift to smaller office systems and shorter panel heights by implementing the indexing practice. We introduce the term "adaptive remanufacturing" to describe this situation, and define adaptive remanufacturing as the process of adapting a core normally used to remanufacture a like product to be used to remanufacture a similar product. As an example, Davies is able to utilize panel divider cores that measure 65"H x 48"W to produce panel dividers of 52"H x 48"W that include additional features, such as a frosted glass panel to allow more light to the office cubicle than the original panel. Although Davies primarily resizes cores, adaptive manufacturing may be a more generally applicable term and practice, including instances where surplus cores intended for a given product may be modified and made suitable as a core for a similar but non-identical product. The remanufacturing scenarios in this study include circumstances both with and without indexing for the panel dividers. Although Davies also resizes work surfaces, storage cabinets, and pedestals, as well as reconfiguring drawer layouts based on customer requirements, this study does not consider indexed units of those product types in order to preserve the uniformity of the functional unit.

#### 2.4.2 OEM Office System

This analysis considers only the Steelcase Avenir<sup>®</sup> OEM office system, as this was the primary product family offered at Davies during this assessment. A previous study conducted through the Center for Sustainable Systems at the University of Michigan analyzed the life cycle of the Steelcase Answer office system.<sup>18</sup> This study provided detail for materials, manufacturing processes and transportation of the office products. This data was used to build the OEM Avenir<sup>®</sup> model in SimaPro for comparison to the remanufactured system.

The OEM Steelcase Answer and Avenir<sup>®</sup> office systems are similar in regards to the major components contained within each system. Both utilize a file storage system constructed primarily of steel. The divider panels are both composed of similar materials and the physical configuration is similar as well. Both systems utilize a particle board work surface covered with a laminate. The only major difference between the work surfaces is the Answer uses support legs constructed of steel with additional hardware, where

<sup>&</sup>lt;sup>17</sup> Meeting at Davies, comments by Bill Davies and Mike Nguyen

<sup>&</sup>lt;sup>18</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005.



the Avenir<sup>®</sup> does not. This study is able to segregate the components and materials of interest from ones that are not the same, for comparative assertions.

### 2.4.3 Davies Remanufactured System

The Davies remanufacturing process begins at the field disassembly and return shipping of old office systems from customer locations to Davies processing facilities in Albany, New York. Upon arrival, Davies segregates the various components into four (4) categories—work surfaces, storage cabinets, panels, and hardware—and sends them either to remanufacturing operations or to storage (Figure 16). During this initial processing stage, Davies conducts a preliminary assessment of incoming product quality to separate products that are unusable due to irreparable damage or age. Davies does not explicitly track the number of components that do not meet the quality for remanufacture. Davies did provide an estimate as to what they typically see for each component. They are typically able to repair most damaged items. They did indicate that the panel fiberglass tack board and the work surface core are two items that can require replacement. Davies provided estimates as to how often they replace those items. Davies indicated that one in one hundred work surfaces might require replacement, while one in twenty tack boards may require replacement. These estimates are normalized on a per product basis in the model and the new material and scrap are counted accordingly. For the work surface and tack board, new materials are used in those instances where replacement is required.

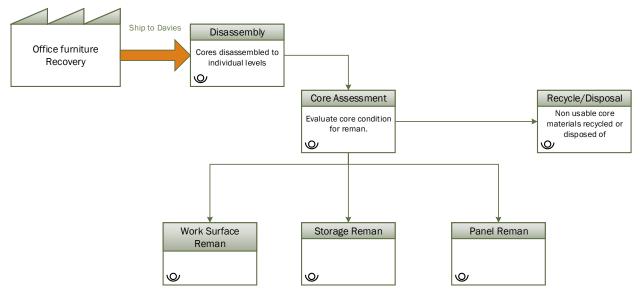



Figure 16: Remanufacturing Intake Process

After evaluation and staging, components proceed through the remanufacturing process in accordance with unique customer specifications. Each component process varies depending on the initial condition of the component and the customer's requirements. Customers typically define upholstery material and



color specifications. Many of the processes at Davies are executed manually or utilize small electric or pneumatic hand tools.<sup>19</sup>

### Work Surface Remanufacturing

The work surface process, illustrated in Figure 17, begins with the removal of hardware and evaluation of the core. New laminate and edging are added to the work surface; old edging is removed and discarded, however old laminate may be layered over without stripping off the previous layers. If several layers of laminate accumulate due to previous remanufacturing, they are sanded off and replaced with a fresh layer in order to meet thickness specifications required for compatibility with the rest of the system. Table 5 shows the material reuse rates for the work surface, which accounts for the rejected material that was not suitable for reuse. Note that reuse rates for original laminate are 0%; this reflects the practice of adding new laminate regardless of existing laminate condition. Existing laminate is often left on the work surface core, but, when covered, is not the topmost functional layer, and is therefore not considered to be reused. Several remanufacturing cycles of a work surface will inevitably increase the overall thickness due to the multiple laminate layers. When this occurs, Davies will conduct a more substantial sanding operation to reduce the work surface thickness by removing the additional laminate layers. This does not mean, however, that all layers are removed, rather enough material is removed to meet the thickness requirement.

| Component<br>Description | Reuse Yield<br>1 <sup>st</sup> Reuse | Reuse Yield<br>2 <sup>nd</sup> Reuse |
|--------------------------|--------------------------------------|--------------------------------------|
| Work Surface Core        | 99%                                  | 99%                                  |
| Laminate                 | 0%                                   | 0%                                   |
| PVC Edge band            | 0%                                   | 0%                                   |

|--|

**Table 5: Material Recovery** 

<sup>&</sup>lt;sup>19</sup> Site visit observation during data collection.



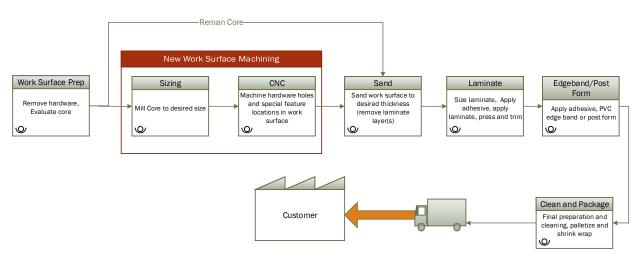



Figure 17: Work surface remanufacturing process

Waste from the work surface process consists of old PVC edgeband, trimmings from the laminate, and dust from sanding operations. During instances where the work surface requires replacement, the old work surface will be scrapped. There will also potentially be scrap from the cutting and forming of a new work surface from particle board.

### Panel Remanufacturing

Panels may follow two (2) different pathways; standard remanufacturing or Indexing (Figure 18). The indexing process resizes panel structures to meet specific customer requirements. This process is unique to Davies, and creates a competitive advantage by offering customizable component configurations often not available from the OEM. Materials removed in the indexing process are discarded primarily to recycling; those that are not recyclable are disposed of in municipal solid waste. Table 6 indicates material reuse rates in initial and subsequent remanufacturing cycles, which takes into consideration the fall out of panel materials that do not meet quality standards and cannot be reused.

| Panel                    |                                      |                                      |  |  |  |  |  |
|--------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|
| Component<br>Description | Reuse Yield<br>1 <sup>st</sup> Reuse | Reuse Yield<br>2 <sup>nd</sup> Reuse |  |  |  |  |  |
| Panel Frame with legs    | 100%                                 | 100%                                 |  |  |  |  |  |
| Тор Сар                  | 100%                                 | 100%                                 |  |  |  |  |  |
| side rails               | 0%                                   | 0%                                   |  |  |  |  |  |
| snap on frame            | 100%                                 | 100%                                 |  |  |  |  |  |
| Fabric Skin              | 0%                                   | 0%                                   |  |  |  |  |  |
| Tack Board               | 95%                                  | 95%                                  |  |  |  |  |  |



| Panel                    |                                      |                                      |  |  |  |  |
|--------------------------|--------------------------------------|--------------------------------------|--|--|--|--|
| Component<br>Description | Reuse Yield<br>1 <sup>st</sup> Reuse | Reuse Yield<br>2 <sup>nd</sup> Reuse |  |  |  |  |
| Acoustical Filler        | 100%                                 | 100%                                 |  |  |  |  |
| Chipboard Divider        | 100%                                 | 100%                                 |  |  |  |  |

**Table 6: Panel Material Reuse** 

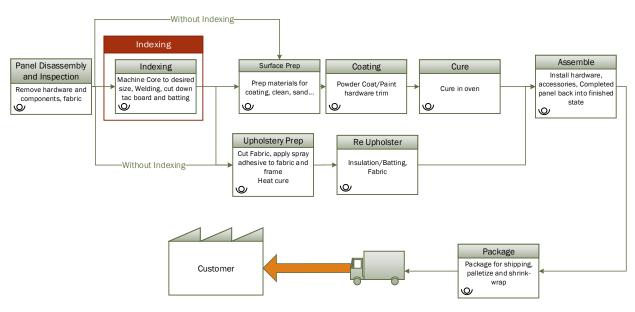



Figure 18: Panel remanufacturing process

Waste from the panel process includes old fabric covering, steel side rails from the OEM that are replaced with PVC side rails and recycled. For the scenario where panels are indexed, the steel frame material removed is recycled, and the tack board, and acoustical batting scrap from indexing are scrapped as well. Tack board is also scrapped when it does not meet the quality requirements for reuse and replaced with new material.

### File/Pedestal Remanufacturing

Lateral file and pedestal units may also follow either of two (2) paths (Figure 19). Indexing is generally used only for taller files and other storage units, while the pedestal and two- (2) drawer lateral file units are a standard height designed specifically to fit under the work surface. This study does not consider indexing of the file or storage due to the rarity of its occurrence. This omission allows life cycle models to more accurately represent typical products. All components within file and pedestal units are saved and reused (Table 7), Davies indicated that they are able to reuse all storage and that there is no fall out.



#### File/Pedestal

| Component<br>Description | Reuse Yield<br>1 <sup>st</sup> Reuse | Reuse Yield<br>2 <sup>nd</sup> Reuse |
|--------------------------|--------------------------------------|--------------------------------------|
| Core/shell               | 100%                                 | 100%                                 |
| Drawers                  | 100%                                 | 100%                                 |

**Table 7: File/Pedestal Material Reuse** 

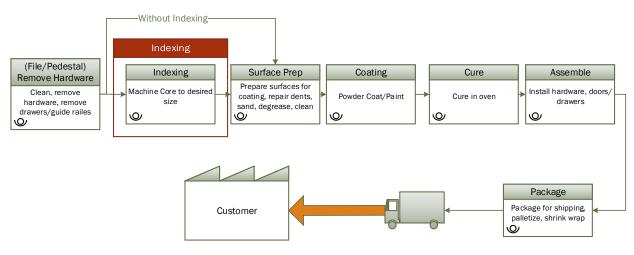



Figure 19: File and Pedestal Remanufacturing

Waste from the file and pedestal remanufacturing process are primarily from the powder coating process. Powder coating over spray is collected and disposed of. Heat from the curing oven may also be considered an emission.

The scenarios modeled in this study for OEM and Reman have the same quantity of components and same layout illustrated in Figure 2 and Figure 6. In this study three consecutive life cycles are modeled, the OEM, Reman 1 and Reman 2. The OEM life cycle starts with all panels at 65 inches high, which are sized (indexed) down during the first remanufacturing cycle to the sizes indicated in Table 2. The Reman 2 life cycle assumes all panels are sized accordingly and no indexing occurs. The components and office system were modeled with two types of scenarios, independent and combined. The combined life cycle model assumes reman would not exist if not for the OEM therefore OEM impacts are included. For each life cycle the impacts are aggregated and divided based on the total number of life cycles the system experienced as illustrated in Figure 20. The independent life cycle compares the OEM life cycle directly with the reman life cycle.



Illustrated in Figure 21 is the method for determining the life cycle impacts for the combined model. Each life cycle starts with the OEM and ends with final EOL. The combined life cycle method takes the burden from each life cycle and distributes it equally across each life cycle within that scenario.

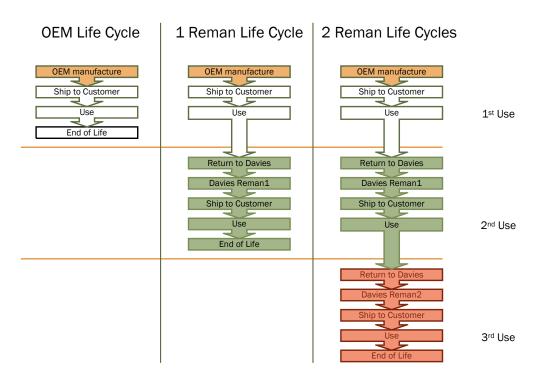



Figure 20: Combined Life Cycle Model

The combined life cycle method applies the burden of the OEM material use and the credit for recycling at the end of life across all life cycles, illustrated in Figure 21. This method averages the aggregated impacts of the products across the number of life cycles the products have endured.



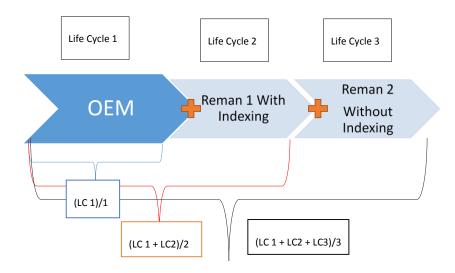



Figure 21: Combined Life Cycle Model Calculation



# 3. Life Cycle Inventory

### 3.1 Inventory Data

### 3.1.1 Material

Life cycle impacts are calculated based on the mass of each constituent material used in production. Mass data for each component material was measured directly at the remanufacturing facility and supported by previous material analyses performed at Davies. Material types were determined by product/material data sheets, literature research, and COE-ASM experience and expert knowledge. At the request of COE-ASM, Davies provided part and material replacement rates for each of the three (3) main office system components. COE-ASM staff translated materials lists from OEM and remanufactured office systems to corresponding material types modeled in the Ecoinvent 3 database. In the event a material was not available in the database, a surrogate material model was either chosen or built from the combination of other available material models that would most closely represent the original. One example of a surrogate would be the tack board which is comprised of a pressed fiberglass, Table 8. Since there are no finished materials that represent the tack board in the Ecoinvent 3 database, one was made using raw fiberglass material and a binding resin. Both the OEM and Davies use a water based resin for the contact adhesive. Specific data for the OEM resin was not available in the OEM LCA. Davies uses a 3M Fastbond 30NF with the composition illustrated in Figure 22. For the composition in SimaPro, water content is assumed to be a median of the range at 45%. Polychloroprene was modeled at the median of 35% using synthetic rubber, which serves as the base material. The rosin polymer with phenol was modeled with phenolic resin at the maximum 10%, which has a formaldehyde constituent. Glycerol esters of rosin acids was modeled at the maximum 10% using esters of versatic acid. Any ingredients that were within a range of 1.0 % or less were assumed inconsequential and not included. This same composition was used for the OEM model as well, since primary data was lacking.

| Ingredient                               | <u>C.A.S. No.</u> | <u>% by Wt</u> |
|------------------------------------------|-------------------|----------------|
| WATER                                    | 7732-18-5         | 30 - 60        |
| POLYCHLOROPRENE                          | 9010-98-4         | 25 - 45        |
| ROSIN, POLYMER WITH PHENOL               | 68083-03-4        | 5 - 10         |
| GLYCEROL ESTERS OF ROSIN ACIDS           | 8050-31-5         | 5 - 10         |
| TOLUENE                                  | 108-88-3          | 1 - 3          |
| METHYL ALCOHOL                           | 67-56-1           | 1 - 3          |
| ZINC OXIDE                               | 1314-13-2         | 1 - 2          |
| ROSIN                                    | 8050-09-7         | < 0.7          |
| POTASSIUM HYDROXIDE                      | 1310-58-3         | < 0.5          |
| 2,2'-METHYLENEBIS[6-TERT-BUTYL-P-CRESOL] | 119-47-1          | < 0.4          |
| NITROGEN                                 | 7727-37-9         | <= 0.01        |

Figure 22: Binding Resin Composition for 3M Fastbond 30NF (Used by Davies)<sup>20</sup>

<sup>&</sup>lt;sup>20</sup> Material Safety Data sheet 3M<sup>™</sup> Fastbond<sup>™</sup> 30NF Cylinder Spray Contact Adhesive, Neutral 08/09/10



Material selections in the Ecoinvent 3 database include the energy required to manufacture individual constituent materials. However, the manufacturing processes required to make each *component* were identified through analysis of OEM and Davies manufacturing systems and translated to processes within the Ecoinvent database.

Table 8, Table 9, and Table 10 indicate the material content for each component by size and mass. The panels have five different sizes, shown in Table 8, and indicates the material type, quantity and mass.

|                          |          |                                    |              | Panel Mat    | erial Weigh  | it (each) kg | 5            |
|--------------------------|----------|------------------------------------|--------------|--------------|--------------|--------------|--------------|
| Component                | Quantity | Material                           | 48w x<br>52h | 42W x<br>65H | 48W x<br>65H | 48w x<br>33h | 42W x<br>52H |
| Panel Frame<br>with legs | 1        | Steel                              | 11.19        | 11.98        | 12.65        | 9.07         | 10.52        |
| Тор Сар                  | 1        | Steel                              | 0.98         | 0.86         | 0.98         | 0.98         | 0.86         |
| side rails               | 2        | Vinyl                              | 0.28         | 0.35         | 0.35         | 0.18         | 0.28         |
| snap on frame            | 2        | Steel                              | 2.08         | 2.23         | 2.35         | 1.69         | 1.96         |
| Fabric Skin              | 2        | Fabric<br>(Polyester/PET<br>Based) | 0.42         | 0.46         | 0.52         | 0.27         | 0.37         |
| Tack Board               | 2        | Pressed<br>Fiberglass              | 1.26         | 1.37         | 1.57         | 0.80         | 1.10         |
| Acoustical Filler        | 2        | Cellulose fiber<br>batting         | 0.57         | 0.62         | 0.71         | 0.36         | 0.50         |
| Chipboard<br>Divider     | 1        | Cardboard                          | 1.14         | 1.25         | 1.43         | 0.72         | 1.00         |

#### Table 8: Panel Material Content

The work surface material in Table 9, indicates an increase in laminate material content. At Davies a new layer of laminate is added on top of the existing layer, thus increasing the overall laminate content. The OEM PVC edge band mass is slightly less than the reman edge band. The OEM edge band removed for the work surface core was weighed directly, and is less than the replacement banding.

|                                   |          | 48x24 Straight kg |            | 42x24 Corner kg |          | kg         |            |
|-----------------------------------|----------|-------------------|------------|-----------------|----------|------------|------------|
| Component Material<br>Description | Quantity | OEM<br>/Core      | Reman<br>1 | Reman<br>2      | OEM/Core | Reman<br>1 | Reman<br>2 |
| Particle Board                    | 1        | 21.9              | 21.9       | 21.9            | 30.5     | 30.5       | 30.5       |
| Laminate                          | 1        | 1                 | 2          | 3               | 1.49     | 2.98       | 4.47       |
| PVC Edge band                     | 1        | 0.048             | 0.060      | 0.060           | 0.048    | 0.060      | 0.060      |
| Spray adhesive                    | 1        | 0.110             | 0.110      | 0.110           | 0.110    | 0.110      | 0.110      |

**Table 9: Work Surface Material Content** 



The lateral file and pedestal, Table 10, are predominately comprised of steel.

| Component Material Description | Quantity | Material | OEM/Core<br>(kg) | Reman 1 &<br>2<br>(kg) |
|--------------------------------|----------|----------|------------------|------------------------|
| Lateral file                   | 1        | Steel    | 49.18            | 49.18                  |
| Pedestal                       | 1        | Steel    | 31.10            | 31.10                  |

#### Table 10: File and Pedestal Material Content

During the indexing process of the panels at Davies, the removed materials are sent to either recycling or waste treatment. Table 11 indicates the mass of the materials removed from panels that started at 65 inches high, panel width is not altered.

|                 | Indexed material to recycling and waste treatment (kg) |           |           |           |  |  |  |
|-----------------|--------------------------------------------------------|-----------|-----------|-----------|--|--|--|
| Material        | 48w x 52h                                              | 42W x 65H | 48w x 33h | 42W x 52H |  |  |  |
| Steel Total     | 2.00                                                   | 1.04      | 4.91      | 3.04      |  |  |  |
| Chipboard total | 0.29                                                   | 0.18      | 0.70      | 0.43      |  |  |  |
| Tac board total | 0.63                                                   | 0.39      | 1.55      | 0.94      |  |  |  |
| Batting total   | 0.28                                                   | 0.18      | 0.70      | 0.43      |  |  |  |

#### Table 11: Indexed Material from Panels

### 3.1.2 Energy

*OEM manufacturing energy* is all of the energy required to gather materials, manufacture, and assemble the final office system components, along with a constant overhead energy value. Overhead energy is the energy that indirectly supports the overall manufacturing facility; that is, energy for lighting, heating, cooling, and ventilation. The OEM manufacturing energy was derived from the (Dietz 2005) study and normalized to a kilowatt-hour per kilogram of component mass (kWh/kg) for each of the three (3) components.<sup>21</sup> (Dietz 2005) estimates manufacturing energy use at the Steelcase Company for general machinery, powder coating, welding, compressed air, and miscellaneous overhead. Powder coating and welding process models are available through the Ecoinvent 3 database and can be modeled and

<sup>&</sup>lt;sup>21</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005.



calculated explicitly; these processes were therefore excluded from intensity calculations since the OEM study provided data for welding and powder coating rates. The OEM energy intensity embody the remaining processes not represented in the Ecoinvent 3 database for the manufacture of the components, and applied as the US average energy mix within the component models. The OEM LCA provides data for energy use at Steelcase for component manufacturing and the ratios by various processes. Table 12 shows the energy intensity for each OEM component.

|                         | Panel | Work Surface | File  |
|-------------------------|-------|--------------|-------|
| Energy Intensity kWh/kg | 0.119 | 0.156        | 0.116 |

Table 12: OEM Energy Intensity



Table 2-7: Manufacturing Equipment Operating Requirements; source: Bernhard thesis except (a) and (b); (a) source: (GE 2003), (b) source (Bookshar 2001)

| Equipment                      | Electricity,<br>kWh/hr | Compr. Air, cf/hr | Cool. Water, gal/hr |
|--------------------------------|------------------------|-------------------|---------------------|
| CNC laser cutter (steel)       | 27                     | 1,500             |                     |
| CNC router (wood)              | 19.8                   | 1,500             |                     |
| Conveyor band (per motor)      | 0.4                    |                   |                     |
| Cut and edge band              | 30                     | 5                 |                     |
| Drilling (steel)               | 0.959                  |                   |                     |
| Dowel inserter                 | 5                      | 2                 |                     |
| Electric hand tools            | 0.4                    |                   |                     |
| Finishing                      | 120                    | 15                |                     |
| Hot-laminating press<br>(wood) | 31.8                   | 1,020             |                     |
| Hot-melt station (fabric)      | 18.6                   | 2,100             |                     |
| Hydr. press, large             | 38                     | 5,000             | 13,200              |
| Hydr. press, medium            | 28                     | 2,500             | 12,000              |
| Hydr. Press, avg.              | 33                     | 3,750             | 12,600              |
| Linear drive system (a)        | 0.963                  |                   |                     |
| Mech. Press, large             | 20.9                   | 2,750             |                     |
| Mech. press, medium            | 17.5                   | 1,560             |                     |
| Mech. press, small             | 6.65                   | 420               |                     |
| Mech. Press, avg.              | 15.0                   | 1,580             |                     |
| MIG-welder                     | 56.9                   | 684               | 360                 |
| Pneumatic hand tools (b)       | 0                      | 1,460             |                     |
| Powder coating line            | 642                    | 8,820             |                     |
| Projection welder              | 0                      | 0                 | 0                   |
| Roller press                   | 25.2                   | 1,500             |                     |
| Sanding                        | 25                     | 10                |                     |
| Splicer                        | 5                      | 2                 |                     |
| Spot welder                    | 95                     |                   | 250                 |
| Stretch foiler (packaging)     | 5                      | 300               |                     |
| Table saw                      | 10                     | 2                 |                     |
| Tenoner                        | 20                     | 2                 |                     |

### Figure 23: Equipment Energy Rates from OEM LCA Applied to Davies Reman Processes<sup>22</sup>

<sup>&</sup>lt;sup>22</sup> Spitzley, D. V., Dietz, B. A., & Keoleian, G. A. (2006). Life-Cycle Assessment of Office Furniture Products. Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, Ann Arbor. Available at: http://css.snre.umich.edu/css\_doc/CSS06-11.pdf.



*Remanufacturing energy* is all of the energy, including overhead, required to disassemble, inspect, clean, replace, and reassemble office system components. Davies provided a list of equipment used during the remanufacturing process at the request of COE-ASM. During an onsite visit, COE-ASM staff collected additional equipment data and conducted time studies for each remanufacturing process. These values were combined with process energy consumption rates (energy per time) presented by (Dietz 2005) to estimate process energy use at Davies.<sup>23</sup> Energy rates for certain pieces of equipment used at Davies were derived from values reported in Figure 23, which are assumed to be industry average rates.

Both OEM manufacturing and Davies remanufacturing processes were mapped to representative Ecoinvent 3 processes models whenever possible. For example, there are representative processes in Ecoinvent 3 for welding and powder coating, which are therefore used, while a process for small hand tools is not explicitly defined in Ecoinvent, therefore one had to be created.

Manufacturing energy was modeled as the average US medium voltage at the grid for both the OEM and Davies, from the Ecoinvent unit process.

### 3.1.3 Packaging

Material and process models for OEM packaging are derived from (Dietz 2005) analysis of Steelcase Answer office products, which are assumed to share the same packaging with the Steelcase Avenir<sup>®</sup> system. Current Steelcase packaging practices favor use of recycled and recyclable materials, reducing use of virgin sources.<sup>24</sup> The Dietz study indicated that a total of 7kg of cardboard was used for the work surface and panel combined, 5.8kg of it was applied to the panel. Additionally, 0.8kg of LDPE film is also applied to an individual panel per the study.

Models for Davies product packaging are based on material measurement and analysis performed during onsite assessment and discussions with Davies staff. Davies packaging consists of cardboard, LDPE foam and LLDPE stretch wrap for packaging of components.<sup>25</sup> The LDPE foam and cardboard are used primarily to protect component edges and surfaces from contact. The stretch wrap is used to secure multiple components to a pallet.

<sup>&</sup>lt;sup>23</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005.

<sup>&</sup>lt;sup>24</sup> Steelcase Corporate Sustainability Report, 2014. <u>https://www.steelcase.com/content/uploads/2014/11/Steelcase-Inc\_2014-Corporate-Sustainability-Report\_Web.pdf</u>

<sup>&</sup>lt;sup>25</sup> Onsite assessment and data provided by Davies.



### 3.1.4 Transportation

End-of-life (EOL) office systems designated for remanufacturing are transported from the customer to Davies by truck; the remanufactured office system will then be returned by truck to the same location.

Davies has customers across the United States, and thus transports products to and from customers at varying distances. In effort to maintain consistency throughout the life cycle model, a nominal transportation distance is derived from the top ten (10) states which had the most total invoiced dollars, which represents 80% of Davies annual sales. Travel distance from Davies to a central location in each of these states was measured and weighted based on total sales for each state. Using this methodology, a travel distance of 638 miles (1027 km) was calculated and used as the nominal one-way product transport distance. A complete OEM office system would be retrieved by Davies and transported 638 miles back to their remanufacturing facility. Once remanufactured they would once again transport the office system 638 miles back to the customer.

This study also considers transportation effects from external materials purchased by Davies to support remanufacturing. This includes transport for replacement upholstery and PVC side rail components used on the panels, as well as the PVC edge banding and laminates used on work surfaces.

OEM transportation is based on results reported by (Dietz 2005) for each component. The average travel distance from Steelcase to customer is approximately 191 miles (308 km).<sup>26</sup> Average EOL transportation distance is approximately 25.5 miles (41 km).

### 3.1.5 End-of-Life (EOL) Management

The end-of-life is the final disposition of materials and components of the office system at the end of its useful life. This study analyzes several EOL pathways, which are the municipal solid waste stream (MSW), material recycling, and a combination of both. Davies disassembles all components at their facility, any materials that cannot be reused are automatically recycled, if possible. Since the (Dietz 2005) LCA is dated, some of the EOL routes for non-remanufactured OEM office components covered in that study may not fully reflect current practices. This study assumes that 100% of the steel contained within the panel and

<sup>&</sup>lt;sup>26</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005



file/pedestal storage will be recycled. The remaining panel materials are sent to landfill. 100% of the work surface is assumed to go through the MSW waste stream.

## 3.2 Assumptions and Limitations

While much of the data was provided by Davies or from literature, some assumptions were required to complete the assessment.



| Assumption<br>ID | Assumption Description                                                             | Justification                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | Hardware, such as fasteners or connecting brackets were excluded from the analysis | Hardware falls below the cutoff criteria and would have equivalent impacts for OEM and remanufacturing                                                                                                                                                                                                                                                                                                                  |
| 2                | Consumables at Davies excluded                                                     | Consumable materials not already accounted for in an<br>Ecoinvent unit process were excluded as they would fall<br>below the cutoff criteria of 1%. This includes grinding and<br>sanding discs, and fillers used to repair material surfaces.<br>One (1) out of every 15 work surfaces may require filler<br>repair, using approximately one (1) ounce of filler<br>material, which is below the cutoff based on mass. |
| 3                | Use phase excluded from the analysis                                               | It is assumed that the OEM and Reman will experience<br>similar use, and due to the relatively static nature of the<br>components, with the exception of the drawers on the<br>file and pedestal, use will not be significant. Even though<br>use is within the boundary it is excluded from the analysis<br>since it is assumed similar, therefore this phase of the life<br>cycle is ignored.                         |
| 4                | OEM Manufacturing Process for Steelcase<br>Answer similar to Avenir®               | It is assumed that since the OEM Steelcase Answer office<br>system components analyzed in the Dietz 2005 study are<br>similar to the Steel case Avenir <sup>®</sup> , that the processes for<br>the Answer will also be similar to the Avenir <sup>®</sup> .                                                                                                                                                            |
| 5                | Second reman life cycle does not have indexing                                     | It is assumed that component resizing (indexing) occurs during the first reman life cycle and not the second.                                                                                                                                                                                                                                                                                                           |
| 6                | Scrap material and end of life disposition                                         | It is assumed that steel removed during indexing from<br>panel frames is recycled in the combined life cycle<br>method. Also it is assumed 100% of the steel frames and<br>steel file cabinet at end of life are recycled while all other<br>materials go through the MSW stream.                                                                                                                                       |
| 7                | Packaging materials and process                                                    | Material and process models for OEM packaging are<br>derived from (Dietz 2005) analysis of Steelcase Answer<br>office products, which are assumed to share the same<br>packaging with the Steelcase Avenir <sup>®</sup> system.                                                                                                                                                                                         |
| 8                | Component process flow                                                             | The individual component process flows were adopted<br>from (Dietz 2005) study and is assumed that these<br>processes are representative of the Avenir <sup>®</sup> process flow.<br>Portions of the Steelcase Answer process flows may vary<br>from Avenir <sup>®</sup> based on the Avenir <sup>®</sup> material content.                                                                                             |
| 9                | OEM Work Surface process flow                                                      | The OEM process flow in figure 14, adopted from (Dietz 2005) is assumed to be representative of the Avenir <sup>®</sup> process flow excluding the materials and processes highlighted                                                                                                                                                                                                                                  |
| 10               | OEM Panel process flow                                                             | The OEM process flow in figure 13, adopted from (Dietz 2005), is assumed to be representative of the Avenir® process flow excluding the materials and processes highlighted. The electrical and plastic components were                                                                                                                                                                                                 |



|                  |                        | excluded along with the aluminum slatwall which were not observed in the Avenir <sup>®</sup>                                                                                                                                                              |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assumption<br>ID | Assumption Description | Justification                                                                                                                                                                                                                                             |
| 11               | OEM File process flow  | The OEM process flow in figure 12, adopted from (Dietz 2005), is assumed to be representative of the Avenir® process flow excluding the materials and processes highlighted. Eliminated from the evaluation are the plastic materials and electroplating. |
| 12               | Reman Transportation   | It is assumed that the office system Davies receives for remanufacture will be returned to the same location after.                                                                                                                                       |
| 13               | OEM Transportation     | OEM transportation derived from the adopted from the<br>(Dietz 2005) study for the Steelcase Answer and assumed<br>to be similar to Avenir®                                                                                                               |

Table 13: LCA assumptions and justification

## 3.3 Secondary Data: Life Cycle Assessment Databases

All material and process data provided by Davies and Davies' suppliers were mapped to equivalent representative materials and processes included in the Ecoinvent 3.1 database compiled October 2014. Materials or processes not defined in the database are represented with material or process models that most closely reflect the original. Individual materials were used to build the panel fabric, fiberglass tack board and the acoustical batting, from the Ecoinvent database and based on manufacturer documentation and specifications of the material content. For the tack board, acoustical batting, and adhesive only the material constituents in the specified proportions were used to make those material, there is no processing for their production due to the lack of available processes in Ecoinvent. The fabric also used specified material constituents in their proportions, and the material processing used the process for fleece production, since the material is produced from PET plastic. The work surface laminate only consisted of the material constituents since there was not a representative process for the production or available data. For this analysis, SimaPro 8.0.4.26 LCA software was used to translate the life cycle inventory data into environmental impact.

Ecoinvent 3.1<sup>27</sup> data is used to provide secondary data in SimaPro. Ecoinvent data is compiled from peer reviewed life cycle assessments and peer reviewed data sets. Most Ecoinvent data is collected in Sweden and Europe and represents the industry average in these countries. Select data points, such as the average

<sup>&</sup>lt;sup>27</sup> http://www.ecoinvent.ch/



energy mix, have been collected for the United States and are included in the database. Ecoinvent data is one of the most complete datasets of all life cycle databases commercially available. It is assumed that operations in Europe and the United States are world class, with similar energy usage profiles and production wastes and emissions. It is assumed that Ecoinvent data is representative of US operations. US data was used where available in the Ecoinvent database. Additional information on Ecoinvent data can be found in section 4.2.

# 3.4 Data Quality

This section outlines the data quality requirements, as specified by ISO 14044 section 4.2.3.6.2.

### 3.4.1 Consistency, Precision, and Completeness

Consistency considers how uniformly the study methodology is applied to the various components of the analysis. The methodologies, modeling parameters, and assumptions outlined above were applied to all configurations and scenarios equivalently. The OEM model is based upon the data collected from the OEM core at Davies prior to remanufacturing. Additional process and energy data was used from a previous LCA study. Materials and processes were built in SimaPro from the Ecoinvent 3 database and applied in the same manner to both the OEM and Reman models.

Precision is a measure of the variability of data values within each data category. Because only one data set was available for each configuration, there is no alternate point of reference to which precision can be measured.

Completeness measures the portion of used data collected through primary means for each category in a unit process. Actual material and process data was collected for the remanufactured office products. Where possible, Davies provided facility energy use, material usage, and EOL scrap values for their operations. OEM material quantities were measured at Davies for the OEM cores on hand.

### 3.4.2 Temporal, geographic, and technological representativeness

Temporal representativeness describes the age of data and the minimum length of time for which data was collected. All primary data from Davies was collected in August 2015, and represents current products and practices. Remanufacturing data, including part weights, materials, scrap, and process energy were determined by conducting time studies through the completion of each individual process.

Geographic representativeness describes the geographic area from which unit process data is collected for the study. The impacts of Davies energy use are based on expected impacts from the average U.S. electrical generation grid as modeled by the Ecoinvent 3 database. The US average was chosen to eliminate location bias as an additional variable.

Technological representativeness describes how well the dataset used to develop the LCA model represents the true technological characteristics of the system. Actual materials were identified through



material suppliers, literature search, material analysis, and through Davies staff experience and expertise. These materials were translated to equivalent models available in the Ecoinvent database. Where data for a specific material was not available, surrogate materials were used and documented as an assumption.

### 3.4.3 Representativeness

Representativeness is an assessment of how the dataset used in the LCA model reflects the true system. Component bill of materials (BOM) and remanufacturing process data were either provided by Davies or collected during an onsite study of each process. In this sense, data used in this study is derived directly from the real-world system itself for the Davies remanufacturing model. The OEM model relied on some data presented in a previously conducted study, which may not be representative. Since the cores evaluated at Davies are Steelcase Avenir<sup>®</sup>, the material content for the OEM is representative. The study relies on OEM manufacturing and energy data from the study conducted in 2005 (Dietz 2005).

### 3.4.4 Reproducibility

LCA modeling was performed and documented such that this LCA may be reproduced by another LCA practitioner. This report contains all life cycle inventory data and all assumptions used to calculate the environmental impact of each configuration.

#### 3.4.5 Source of Data

The data source for all data is provided in Appendix A and B.

### 3.4.6 Data Uncertainty

Variability exists in process inputs and outputs. This variability is built into Ecoinvent unit processes as a distribution around the data sources where available. The goal of uncertainty analysis is to understand how uncertainty in the data and assumptions may affect the LCA results. Uncertainty analysis was not performed.

SimaPro was used to perform Monte Carlo analyses of the scenarios in order to understand how data uncertainty affects the results of the life cycle assessments. Each scenario was run 1,000 times at 95% confidence. The uncertainty comparison was made between the OEM office system and the first remanufactured office system using the ReCiPe Midpoint method. Results of the comparison show that only the Natural Land Transformation category has 16.2% uncertainty that the reman office system will have a greater impact than the OEM. The table of results can be seen in Appendix D: Uncertainty Results.



# 4. Life Cycle Impact Assessment

Life Cycle Impact Assessment (LCIA) is the phase of life cycle assessment aimed at understanding and evaluating the magnitude and significance of the potential environmental impacts of a product system. The purpose of this impact assessment is thus to interpret the life cycle GHG emissions and resource consumption inventory for both the OEM and Davies systems. These impacts are communicated in terms of indicators for the Areas of Protection: human health, ecosystem health, and natural resources.

In accordance with the ISO 14044 process, the LCIA proceeds through four (4) steps, the first two of which are compulsory, and the last two optional.<sup>28</sup> This study incorporates all four (4) LCIA steps in the interest of completeness. The steps are as follows:

- **Classification:** all substance elementary flows from the life cycle inventory (e.g. resource consumption, emissions into air, etc.) are assigned to impact categories based on the types of complications to which each is related.
- Characterization: all substances are multiplied by a factor which reflects their relative contribution to the impact category. For example, the characterization factor of CO<sub>2</sub> for climate change is one (1), whereas the characterization factor for methane—which is known to be several times more potent as a GHG than CO<sub>2</sub>—is more than 20. This characterization factor therefore is used to reflect that methane has a higher potential contribution to climate change than carbon dioxide.
- **Normalization (optional):** the quantified impact is compared to a certain reference value; for example, the average environmental impact of a one person during one year in a stated geographic context.
- Weighting (optional): different value choices are given to impact categories to generate a single score of relative importance. Weighting may be useful as an internal communication tool when designing complex products and when trade-off situations occur when comparing alternative products. Weighting should not be used for public dissemination of comparative assertions.

# 4.1 Life Cycle Impact Assessment Methods

Impact assessment calculations are performed using SimaPro version 8.0.4.26 LCA software. This software has multiple native impact assessment methods. The methods chosen for this analysis are detailed below.

<sup>&</sup>lt;sup>28</sup> European Commission, 2010 European Commission, Joint Research Centre, Institute for Environment and Sustainability, ILCD Handbook: Analysing of Existing Environmental Impact Assessment Methodologies for Use in Life Cycle Assessment, European Union (2010).



### 4.1.1 Recipe v1.11 (2014)

One of the main impact assessment methods used in this analysis is the internationally recognized ReCiPe v1.11 (2014) life cycle impact assessment methodology.

The ReCiPe methodology was selected for its comprehensive spectrum of impact categories. The ReCiPe methodology uses a combination problem-oriented (midpoint) and damage-oriented (endpoint) approach. It links eighteen (18) midpoint impact categories to three (3) damage categories: human health, ecosystem quality, and resources. The eighteen (18) impact categories addressed in ReCiPe are shown in Table 14 below.

| Impact category                    | abbr | Indicator Name                       | unit                 | Characterization factor                      | abbr | Unit                                   |
|------------------------------------|------|--------------------------------------|----------------------|----------------------------------------------|------|----------------------------------------|
| climate change                     | СС   | infra-red radiative forcing          | W×yr/m <sup>2</sup>  | global warming potential                     | GWP  | kg (CO2 to air)                        |
| ozone depletion                    | OD   | stratospheric ozone<br>concentration | ppt×yr               | ozone depletion potential                    | ODP  | kg (CFC-11 to air)                     |
| terrestrial acidification          | ТА   | base saturation                      | yr×m <sup>2</sup>    | terrestrial acidification potential          | ТАР  | kg (SO2 to air)                        |
| freshwater<br>eutrophication       | FE   | phosphorus concentration             | yr×kg/m <sup>3</sup> | freshwater eutrophication potential          | FEP  | kg (P to freshwater)                   |
| marine eutrophication              | ME   | nitrogen concentration               | yr×kg/m <sup>3</sup> | marine eutrophication potential              | MEP  | kg (N to freshwater)                   |
| human toxicity                     | ΗT   | hazard-weighted dose                 | -                    | human toxicity potential                     | HTP  | kg (14DCB to urban air)                |
| photochemical oxidant<br>formation | POF  | Photochemical ozone<br>concentration | kg                   | photochemical oxidant formation<br>potential | POFP | kg (NMVOC to air)                      |
| particulate matter<br>formation    | PMF  | PM <u>10</u> intake                  | kg                   | particulate matter formation<br>potential    | PMFP | kg (PM10 to air)                       |
| terrestrial ecotoxicity            | TET  | hazard-weighted<br>concentration     | m <sup>2</sup> ×yr   | terrestrial ecotoxicity potential            | TETP | kg (14DCB to industrial soil)          |
| freshwater ecotoxicity             | FET  | hazard-weighted<br>concentration     | m <sup>2</sup> ×yr   | freshwater ecotoxicity potential             | FETP | kg (14DCB to freshwater)               |
| marine ecotoxicity                 | MET  | hazard-weighted<br>concentration     | m <sup>2</sup> ×yr   | marine ecotoxicity potential                 | METP | kg (14-DCB to marine water)            |
| ionizing radiation                 | IR   | absorbed dose                        | man×Sv               | ionizing radiation potential                 | IRP  | kg (U <sup>235</sup> to air)           |
| agricultural land<br>occupation    | ALO  | occupation                           | m <sup>2</sup> ×yr   | agricultural land occupation<br>potential    | ALOP | m <sup>2</sup> ×yr (agricultural land) |
| urban land occupation              | ULO  | occupation                           | m <sup>2</sup> ×yr   | urban land occupation potential              | ULOP | m <sup>2</sup> ×yr (urban land)        |
| natural land<br>transformation     | NLT  | transformation                       | m <sup>2</sup>       | natural land transformation<br>potential     | NLTP | m <sup>2</sup> (natural land)          |
| water depletion                    | WD   | amount of water                      | m <sup>3</sup>       | water depletion potential                    | WDP  | m <sup>3</sup> (water)                 |
| mineral resource<br>depletion      | MRD  | grade decrease                       | kg <sup>-1</sup>     | mineral depletion potential                  | MDP  | kg (Fe)                                |
| fossil resource<br>depletion       | FD   | lower heating value                  | MJ                   | fossil depletion potential                   | FDP  | kg (oil)                               |

Table 14: ReCiPe impact categories



All midpoint values are expressed in units of a reference substance and related to the three (3) damage categories. This method first converts the life cycle inventory (such as amount of carbon dioxide released or heavy metals used) into midpoint impact categories (such as human toxicity and ozone depletion). These environmental impacts are then aggregated into damage categories. The three (3) ReCiPe damage categories are:<sup>29</sup>

- 1) Human Health in disability-adjusted life years lost (DALY)
- 2) Ecosystems damage in species years lost
- 3) Resources lost in marginal dollar cost

Life cycle environmental impacts are calculated using the ReCiPe (H) framework. The Hierarchical (H) version offers a balanced time perspective between long-term and short-term effects, as well as probability of occurrence and justifying evidence. This framework follows the guidelines of governmental bodies and established international organizations, lending further to its credibility.<sup>30</sup> This cultural point of view can be viewed as a representative balance for a seller of consumer products.

<sup>&</sup>lt;sup>29</sup> The exact details of these categories, indicators and characterization factors can be found in the full ReCiPe 2012 report available at http://www.lcia-recipe.net/.

<sup>&</sup>lt;sup>30</sup> Goedkoop M.J., Heijungs R, Huijbregts M., De Schryver A.;Struijs J., Van Zelm R, ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation; 6 January 2009. http://www.lcia-recipe.net/publications



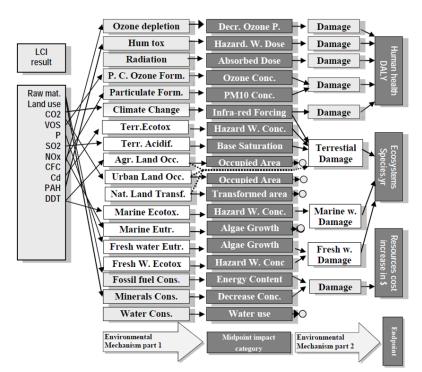



Figure 24 Data Relationship within ReCiPe

### 4.1.2 Cumulative Energy Demand 1.09

This analysis also used the Cumulative Energy Demand 1.09 impact assessment method, an internationally accepted method.<sup>31</sup> The Cumulative Energy Demand (CED) of a product represents the total direct and indirect energy use throughout the product life cycle and is widely used as a screening indicator for environmental impacts.<sup>31</sup> This method was chosen to provide a comparison between the energy use implications of different EOL management strategies. The purpose of many EOL management strategies is to recover or avoid energy use, and thereby extract as much value as possible from the energy already embodied within the product. CED is therefore a valuable metric by which to compare these strategies.

<sup>&</sup>lt;sup>31</sup> Frischknecht R., Jungbluth N., et.al. (2010). Implementation of Life Cycle Impact Assessment Methods.ecoinvent report No.3 2010, Swiss Centre for LCI. Dübendorf, CH, www.ecoinvent.org



|                         | subcategory    | includes                                                              |
|-------------------------|----------------|-----------------------------------------------------------------------|
| non-renewable resources | fossil         | hard coal, lignite, crude oil, natural gas, coal mining off-gas, peat |
|                         | nuclear        | uranium                                                               |
|                         | primary forest | wood and biomass from primary forests                                 |
| renewable resources     | biomass        | wood, food products, biomass from agriculture, e.g. straw             |
|                         | wind,          | wind energy                                                           |
|                         | solar          | solar energy (used for heat & electricity),                           |
|                         | geothermal     | geothermal energy (shallow: 100-300m)                                 |
|                         | water          | run-of-river hydro power, reservoir hydro power                       |

#### Figure 25: Cumulative Energy Demand (CED) in Ecoinvent, category and sub category<sup>31</sup>

CED was chosen for this analysis to provide additional detail to specific processes and materials that may have significant embodied energy requirements. The results of CED can be used to compare the results of the Study.<sup>31</sup>

### 4.2 **Ecoinvent Database**

The Ecoinvent 3.1 database is used for this analysis, and the transform and market Ecoinvent activities were excluded. Ecoinvent data is maintained by the Ecoinvent Research Centre. Created in 1997, the Ecoinvent Research Centre (originally called the Swiss Centre for Life Cycle Inventories) is a Competence Centre of the Swiss Federal Institute of Technology Zürich (ETH Zurich) and Lausanne (EPF Lausanne), the Paul Scherrer Institute (PSI), the Swiss Federal Laboratories for Materials Testing and Research (EMPA), and the Swiss Federal Research Station Agroscope Reckenholz-Tänikon (ART).<sup>32</sup>

The following is adapted from the Swiss Centre for Life Cycle Inventories, ecoinvent Centre, Code of Practice, Data v3.1 (2014).

The ecoinvent data comprise life cycle inventory data covering energy (including oil, natural gas, hard coal, lignite, nuclear energy, hydro power, photovoltaics, solar heat, wind power, electricity mixes, bioenergy), transport, building materials, wood (European and tropical wood), renewable fibres, metals (including precious metals), chemicals (including detergents and petrochemical solvents), electronics, mechanical engineering (metals treatment and compressed air), paper and pulp, plastics, waste treatment and agricultural products. The entire system consists of about 4,000 interlinked datasets. Each dataset describes a life cycle inventory on a unit process level. The functional unit of all these unit

<sup>&</sup>lt;sup>32</sup> Adapted from <u>http://www.ecoinvent.org/database/introduction-to-ecoinvent-3/introduction-to-ecoinvent-version-3.html</u>



processes is either a product or a service (whereby the product may be as large as one complete power plant manufactured for producing electricity).

Categories and subcategories are also used to describe the elementary flows. Elementary flows are identified by the flow name (e.g. "Carbon dioxide, fossil"), the category and the subcategory and the unit. Categories describe the different environmental compartments air, water, soil and resource uses. Subcategories further distinguish subcompartments within these compartments which may be relevant for the subsequent impact assessment step. The categories "air", "water" and "soil" describe the receiving compartment and are used for (direct) pollutant emissions whereas the category "resource" is used for all kinds of resource consumption. For instance, water consumption is recorded as an input in the category/subcategory "resource/in water". Land transformation and occupation is recorded as an input in the category/subcategory "resource/land."

### 4.3 LCIA Limitations

There are limitations inherent in the use of the damage-oriented impact assessment method. ReCiPe includes indicators that significantly impact damage categories such as human health, but no method is absolutely complete—some indicators such as heavy metals and endocrine disruptors are not calculated in ReCiPe.

In addition, as with any LCA, there are limitations on how the results should be used. LCA results should not be considered the only source of environmental information on a product or process.

Lack of primary data for OEM Avenir<sup>®</sup> production limits the comparison of the OEM model to the Davies remanufactured model. It is assumed that the data used is representative and any areas where primary data was not used a sensitivity was conducted. OEM energy use is based on 2005 data and any efficiency improvements or location changes for the OEM cannot be quantified. Primary OEM data for component mass and materials was collected directly at Davies from OEM Avenir<sup>®</sup> cores. The OEM Avenir<sup>®</sup> components assessed in this study may no longer be produced by Steelcase or the same as the current Avenir<sup>®</sup> product offering. OEM packaging is another limitation in this study, due to lack of primary data. The OEM LCA (Dietz 2005) provides data for packaging, however improvements in process and materials and quantities used cannot be determined for current OEM conditions.



# 5. Results

# 5.1 Cumulative Energy Demand (CED)

The cumulative energy demand was analyzed for both the OEM and Davies office system along with the individual component life cycles.

### 5.1.1 Office System Comparison (Independent life cycle method)

The complete office system is comprised of all components identified in the functional unit in Table 2. The office system comparison considers only the activities that occur at the OEM or Davies manufacturing level, indicated by the dotted circles in Figure 26, and does not include packaging, shipping, use or end-of-life of the final product. It was of most interest to evaluate and compare the manufacturing operations between the OEM and Reman. Since transportation is variable, this was evaluated separately in the sensitivity analysis. The use phase is excluded since it is assumed the OEM and Reman systems will have similar use. End of life is modeled separately for the individual components and compared across life cycles. Figure 27 illustrates the CED of an OEM office system compared to the first remanufacturing cycle (including panel indexing and material disposition) and a second remanufacturing cycle without panel indexing. The results suggest that both the reman 1 and reman 2 life cycles require 82 percent less energy than OEM production.

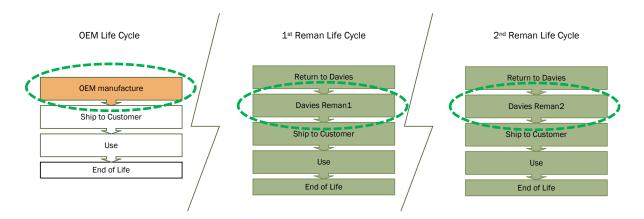



Figure 26: Office System Independent Live Cycle Comparison



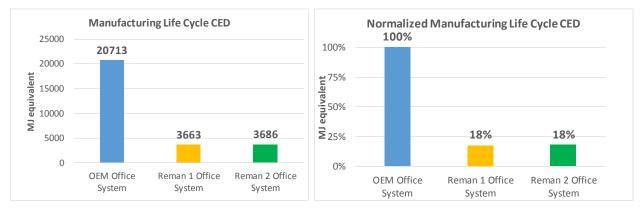



Figure 27: Office System CED Comparison

### 5.1.2 Divider Panel (Combined life cycle method)

Office panels defined in this study have several different sizes. One representative scenario for the 65Hx48W panel was selected for detailed analysis. This panel was seen to be a typical core height received at Davies and provides the most potential for material scrap when resizing occurs during remanufacturing. Alternatively, if the panel was not resized it would require the greatest amount of replacement materials such as fabric and fiberglass tack board. Figure 29 illustrates life cycle CED comparisons for the OEM and subsequent remanufacturing scenarios. Each life cycle starts with the OEM panel and transitions to end-of-life or subsequent remanufacturing illustrated in Figure 28. This method assumes that without first producing the OEM product, there would not be remanufacturing. The total CED for each life cycle, it is averaged by the number of uses within these life cycles. In the first remanufacturing life cycle, it is assumed the panel will be indexed from its original size to a smaller size in accordance with customer specifications. Results suggest that the OEM and first remanufacturing cycle averaged over the two life cycles is 58 percent of the OEM life cycle. The second combined remanufacturing cycle is 45 percent of the OEM. This trend indicates that there is increasing benefit as the number of remanufacturing cycles increase.



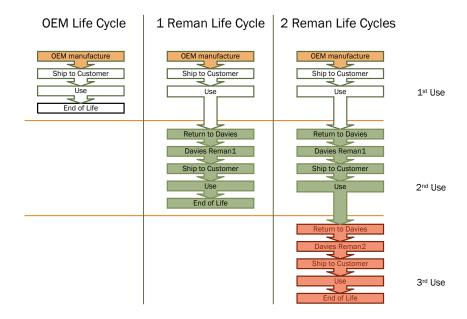
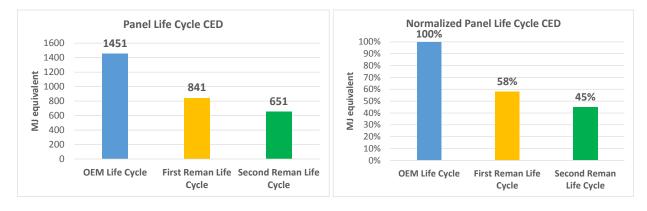
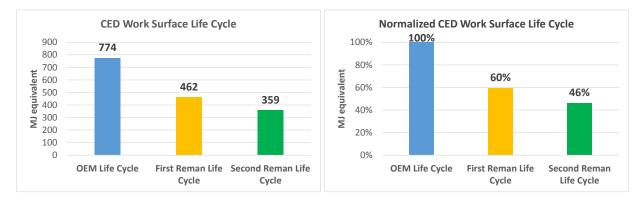



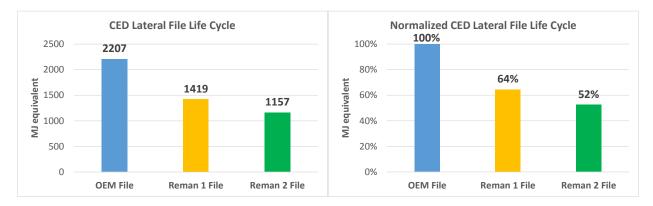

Figure 28: Combined Life Cycle Scenarios




#### Figure 29: Divider Panel Life Cycle CED Comparison

### 5.1.3 Work Surface (Combined life cycle method)

An individual 48W x 24D inch work surface was discreetly analyzed and compared across combined life cycles. The combined work surface CED life cycles takes on a similar pattern as previously illustrated with the panel. The first and second remanufacturing life cycle of the work surface is 60 and 46 percent respectively of the OEM CED.






#### Figure 30: Work Surface Life Cycle CED Comparison

### **5.1.4** Lateral File (Combined life cycle method)

The combined life cycle CED of a 2 drawer lateral file is compared to one another for the three life cycles defined. The difference between the OEM and remanufactured life cycles is slightly less, where reman 1 and reman 2 are 37 percent and 50 percent less than OEM. This can be attributed to the powder coating process intensity and will be further explored in the next section.



#### Figure 31: Lateral File Life Cycle CED Comparison

### 5.2 Environmental Impact

All environmental impact results for the ReCiPe method are reported in the following sections. The Climate Change Midpoint was selected for closer analysis and is described in the following section. In general, the normalized environmental impacts from each category have a similar ratio between life cycles with the exception of Ozone depletion and metal depletion.



### 5.2.1 Climate Change Midpoint

The "climate change" midpoint category is the anthropogenic greenhouse effect caused by the emissions of human activities. The ReCiPe impact assessment method uses a known environmental mechanism as the basis for the modelling. An environmental mechanism is a series of independent or interrelated effects that together can create damage to human health, ecosystems, or resources.

For example, a number of substances increase radiative forcing in the atmosphere, preventing heat from escaping the earth back into space. As a result, more energy is trapped on earth, and temperature increases. The outcome is that we can expect changes in habitats, and therefore some species may go extinct. This progression is shown in Figure 32, which is figure 3.1 from the ReCiPe assessment document.<sup>33</sup>

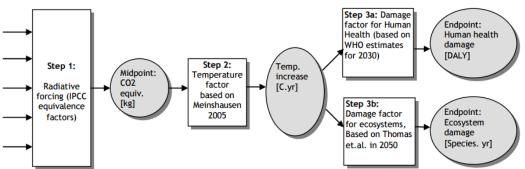
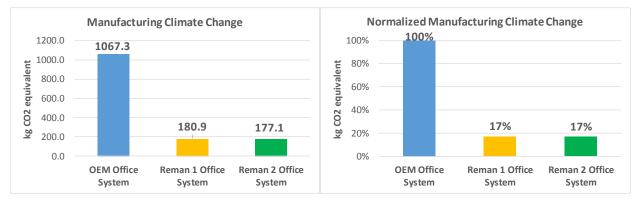



Figure  $\overline{3.1:}$  Overview of the steps in modelling effects of greenhouse gases with respect to climate change.

#### Figure 32: ReCiPe Modeling of Climate Change

This model therefore reports the lower uncertainty climate change midpoint values in kg of CO<sub>2</sub> equivalents based on factors developed by the UN's Intergovernmental Panel on Climate Change (IPCC 2007). Factors are expressed over a standard 100-year time horizon.


### 5.2.2 Office System Comparison (Independent life cycle method)

Similar to CED, the environmental impact for the manufacturing cycles follow the same trend. Figure 33 shows the climate change impact for each system, where the normalized reman 1 and reman 2 system are both 83 percent less than the OEM. The first reman life cycle is slightly more impactful compared to

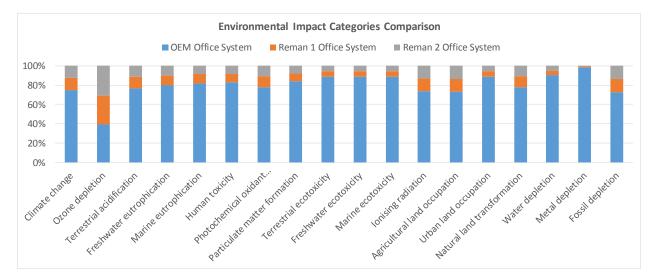
<sup>&</sup>lt;sup>33</sup> Goedkoop, M., ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, First edition, Report I: Characterisation, PRé Consultants, http://www.leidenuniv.nl/cml/ssp/publications/recipe\_characterisation.pdf



the second reman cycle. This can be attributed to the indexing of the divider panels in the reman 1 life cycle.



#### Figure 33: Office System Climate Change Comparison


Table 15 and Figure 34 displays the values for all of the impact categories for all three office systems. Significant differences between the OEM and remanufactured systems can be attributed to several areas. The OEM system steel material and processing is a significant contributor to the impacts which is illustrated Figure 39. While Davies only performs minor cutting and welding operations on some panels. The OEM and Reman scenarios were all generated using the ReCiPe 2014 method. Raw data from the OEM study was utilized in the current method to create the OEM model.

| Impact category                 | Unit         | OEM Office System | Reman 1 Office<br>System | Reman 2 Office<br>System |
|---------------------------------|--------------|-------------------|--------------------------|--------------------------|
| Climate change                  | kg CO2 eq    | 1067.3            | 180.9                    | 177.1                    |
| Ozone depletion                 | kg CFC-11 eq | 2.87E-04          | 2.18E-04                 | 2.23E-04                 |
| Terrestrial acidification       | kg SO2 eq    | 4.0               | 0.6                      | 0.6                      |
| Freshwater eutrophication       | kg P eq      | 5.62E-01          | 7.12E-02                 | 7.05E-02                 |
| Marine eutrophication           | kg N eq      | 2.83E-01          | 3.33E-02                 | 3.04E-02                 |
| Human toxicity                  | kg 1,4-DB eq | 602.0             | 62.6                     | 62.1                     |
| Photochemical oxidant formation | kg NMVOC     | 3.0               | 0.4                      | 0.4                      |
| Particulate matter formation    | kg PM10 eq   | 2.3               | 0.2                      | 0.2                      |
| Terrestrial ecotoxicity         | kg 1,4-DB eq | 1.94E-01          | 1.28E-02                 | 1.26E-02                 |
| Freshwater ecotoxicity          | kg 1,4-DB eq | 22.4              | 1.4                      | 1.4                      |
| Marine ecotoxicity              | kg 1,4-DB eq | 22.1              | 1.4                      | 1.4                      |
| lonising radiation              | kBq U235 eq  | 282.6             | 50.9                     | 50.4                     |
| Agricultural land occupation    | m2a          | 91.4              | 16.2                     | 17.4                     |
| Urban land occupation           | m2a          | 11.9              | 0.8                      | 0.8                      |



| Impact category             | Unit      | OEM Office System | Reman 1 Office<br>System | Reman 2 Office<br>System |
|-----------------------------|-----------|-------------------|--------------------------|--------------------------|
| Natural land transformation | m2        | 2.05E-01          | 2.90E-02                 | 2.88E-02                 |
| Water depletion             | m3        | 17.7              | 1.0                      | 1.0                      |
| Metal depletion             | kg Fe eq  | 749.9             | 5.6                      | 5.3                      |
| Fossil depletion            | kg oil eq | 334.1             | 63.3                     | 62.8                     |

#### Table 15: ReCiPe Midpoint Office System Impact



#### Figure 34: Office System Impact Comparison from ReCiPe Midpoint

The impacts for Ozone Depletion have less improvement compared to the other categories from OEM to reman. As illustrated in Figure 35 the first and second reman life cycles are only 76% and 78% respectively of the OEM.

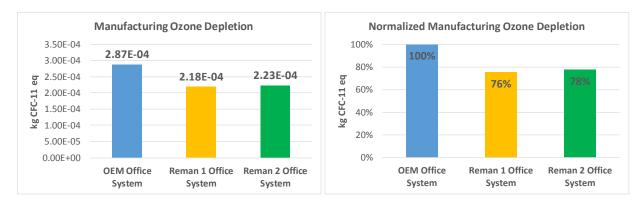
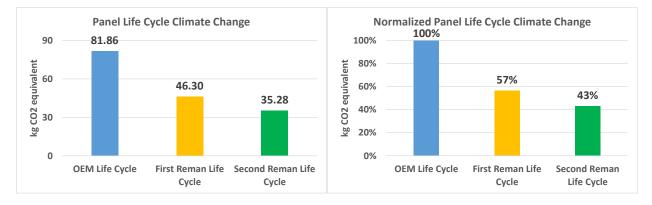




Figure 35: Office System Life Cycle Ozone Depletion



### **5.2.3** Divider Panel (Combined life cycle method)

The environmental impacts of a single panel life cycles in Figure 36 follow the same pattern as in the previously discussed CED comparison for the combined life cycle method.



#### Figure 36: Panel Life Cycle Climate Change Comparison

Table 16 and Figure 37 displays all eighteen impact category results for the panel. Each category follows the same trend as the climate change, discussed previously, with varying degrees of magnitude.

| Impact category                    | Unit            | OEM Life<br>Cycle | First Reman Life Cycle | Second Reman Life<br>Cycle |
|------------------------------------|-----------------|-------------------|------------------------|----------------------------|
| Climate change                     | kg CO2 eq       | 81.86             | 46.30                  | 35.28                      |
| Ozone depletion                    | kg CFC-11<br>eq | 4.06E-05          | 3.32E-05               | 3.14E-05                   |
| Terrestrial acidification          | kg SO2 eq       | 0.32              | 0.18                   | 0.14                       |
| Freshwater eutrophication          | kg P eq         | 0.04              | 0.02                   | 0.02                       |
| Marine eutrophication              | kg N eq         | 0.03              | 0.02                   | 0.01                       |
| Human toxicity                     | kg 1,4-DB<br>eq | 37.34             | 20.31                  | 15.28                      |
| Photochemical oxidant<br>formation | kg NMVOC        | 0.21              | 0.12                   | 0.09                       |
| Particulate matter<br>formation    | kg PM10<br>eq   | 0.12              | 0.07                   | 0.05                       |
| Terrestrial ecotoxicity            | kg 1,4-DB<br>eq | 0.02              | 0.01                   | 0.01                       |



| Impact category                | Unit            | OEM Life<br>Cycle | First Reman Life Cycle | Second Reman Life<br>Cycle |
|--------------------------------|-----------------|-------------------|------------------------|----------------------------|
| Freshwater ecotoxicity         | kg 1,4-DB<br>eq | 1.25              | 0.64                   | 0.47                       |
| Marine ecotoxicity             | kg 1,4-DB<br>eq | 1.20              | 0.62                   | 0.45                       |
| lonising radiation             | kBq U235<br>eq  | 24.31             | 14.20                  | 10.92                      |
| Agricultural land occupation   | m2a             | 4.39              | 2.26                   | 1.56                       |
| Urban land occupation          | m2a             | 0.81              | 0.41                   | 0.29                       |
| Natural land<br>transformation | m2              | 0.02              | 0.01                   | 0.01                       |
| Water depletion                | m3              | 2.05              | 1.05                   | 0.72                       |
| Metal depletion                | kg Fe eq        | 15.40             | 5.66                   | 3.88                       |
| Fossil depletion               | kg oil eq       | 24.86             | 14.33                  | 11.08                      |

Table 16: ReCiPe Midpoint Panel Impact





Figure 37: ReCiPe Midpoint Panel Life Cycle Impacts

Figure 39 shows a comparison of the grouped categories within the life cycles. Materials have the greatest impact for both OEM and Remanufacturing.

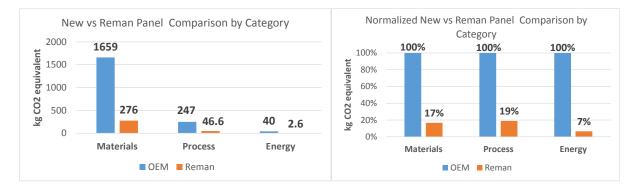
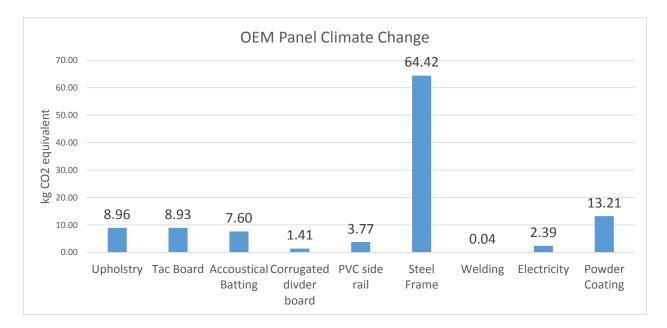




Figure 38: New vs Reman Impact Contributions to Climate Change for Panels



The majority of the OEM panel material impact is from the production of the steel components used in the panel, followed by the powder coating process.



#### Figure 39: OEM Panel Climate Material and Process Contributors

The remanufactured panel indicates the major contributors to climate change are derived from the resources and energy used to produce the upholstery and PVC side rails illustrated in Figure 41. The next major contributor is from powder coating of the panel trim plates. The remanufacturing process receives a credit when there is indexing involved. The steel material is recycled and provides a net benefit even when combined with the transportation and disposal of the other materials removed. Figure 40 shows the network diagram at 2 percent cutoff for the discarded material from indexing.



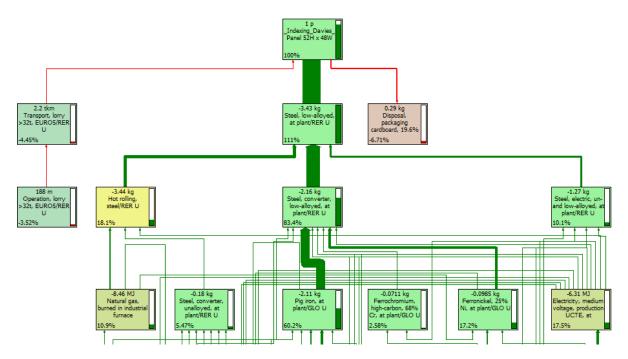



Figure 40: EOL for Indexed Materials from Panel



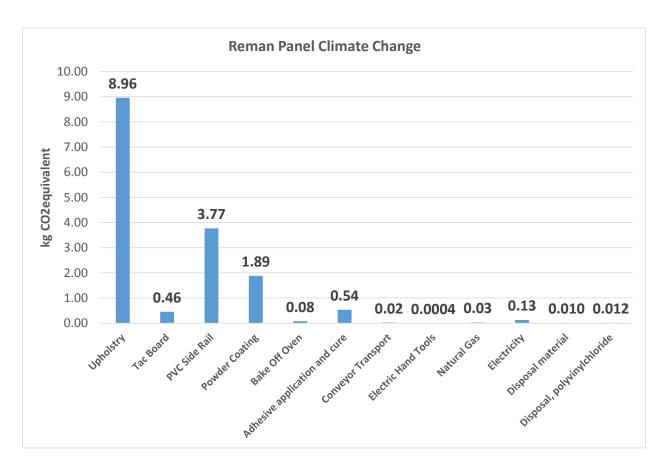
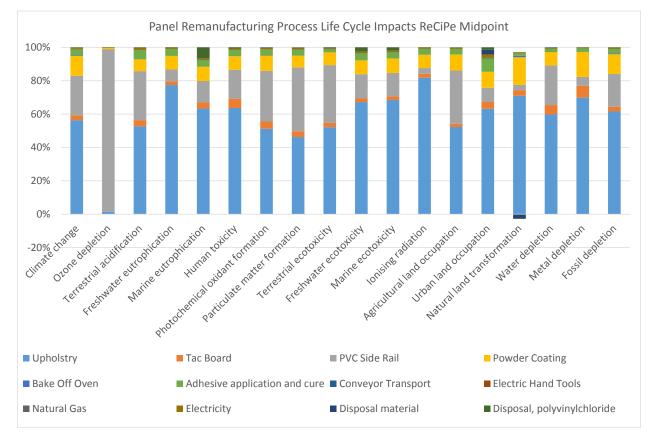




Figure 41: Davies Reman Panel Climate Material and Process Contributors

• The Polyester panel covering upholstery and PVC side rails contribute approximately 75% to 85% of the total impacts in each of the categories, illustrated in Figure 42.

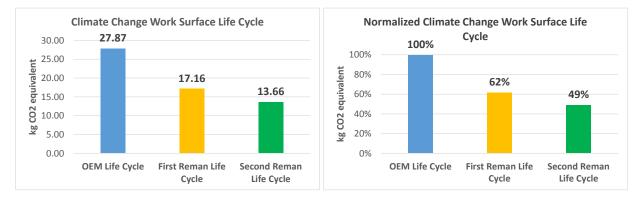


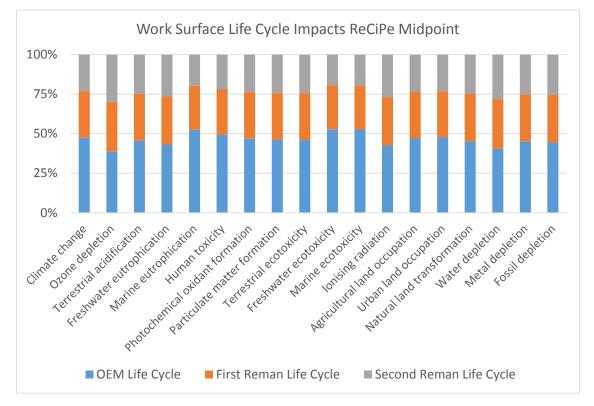


# Figure 42: Remanufactured Panel Life Cycle Impacts

# 5.2.4 Work Surface (Combined life cycle method)

The combined life cycle method for the work surface shows that reman 1 and reman 2 are 62 and 49 percent of the OEM, respectively.





Figure 43: Work Surface Life Cycle Climate Change Comparison



| Impact category                 | Unit         | OEM<br>Life<br>Cycle | First<br>Reman Life<br>Cycle | Second Reman<br>Life Cycle |
|---------------------------------|--------------|----------------------|------------------------------|----------------------------|
| Climate change                  | kg CO2 eq    | 27.87                | 17.16                        | 13.66                      |
| Ozone depletion                 | kg CFC-11 eq | 4.69E-<br>06         | 3.77E-06                     | 3.67E-06                   |
| Terrestrial acidification       | kg SO2 eq    | 0.08                 | 0.05                         | 0.04                       |
| Freshwater eutrophication       | kg P eq      | 0.01                 | 0.00                         | 0.00                       |
| Marine eutrophication           | kg N eq      | 0.07                 | 0.04                         | 0.03                       |
| Human toxicity                  | kg 1,4-DB eq | 15.65                | 9.14                         | 7.00                       |
| Photochemical oxidant formation | kg NMVOC     | 0.07                 | 0.05                         | 0.04                       |
| Particulate matter formation    | kg PM10 eq   | 0.03                 | 0.02                         | 0.02                       |
| Terrestrial ecotoxicity         | kg 1,4-DB eq | 1.55E-<br>03         | 1.00E-03                     | 8.24E-04                   |
| Freshwater ecotoxicity          | kg 1,4-DB eq | 3.91                 | 2.06                         | 1.45                       |
| Marine ecotoxicity              | kg 1,4-DB eq | 3.38                 | 1.79                         | 1.26                       |
| Ionising radiation              | kBq U235 eq  | 3.77                 | 2.71                         | 2.38                       |
| Agricultural land occupation    | m2a          | 12.45                | 7.82                         | 6.28                       |
| Urban land occupation           | m2a          | 0.33                 | 0.21                         | 0.16                       |
| Natural land transformation     | m2           | 3.91E-<br>03         | 2.60E-03                     | 2.16E-03                   |
| Water depletion                 | m3           | 0.09                 | 0.07                         | 0.06                       |
| Metal depletion                 | kg Fe eq     | 0.80                 | 0.53                         | 0.45                       |
| Fossil depletion                | kg oil eq    | 6.69                 | 4.54                         | 3.85                       |

Table 17: ReCiPe Midpoint Work Surface Life Cycle Impact





# Figure 44: Work Surface Life Cycle Impacts

The greatest contributor to the OEM work surface is the particle board and laminate, followed by the manufacturing energy.



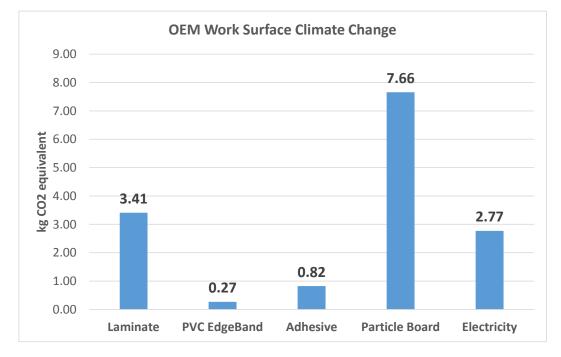
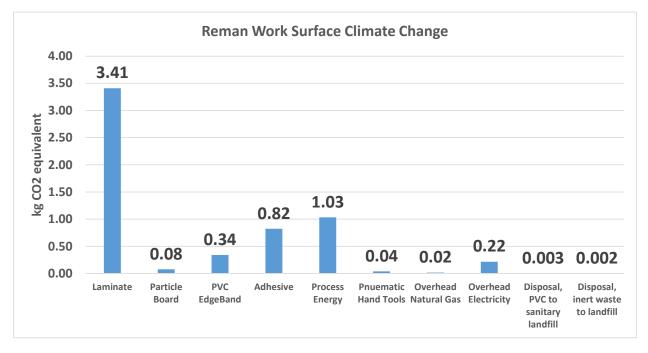




Figure 45: OEM Work Surface Climate Change Impacts

The greatest impact to the remanufacturing of the work surface is from the use of new laminate material.





#### Figure 46: Reman Work Surface Climate Change Impacts

• The laminate material used on the work surface has the greatest contribution to environmental impact in a majority of the impact categories, followed by process energy, illustrated in Figure 47. Use of PVC edge banding contributes to over 80% of the Ozone Depletion impact.



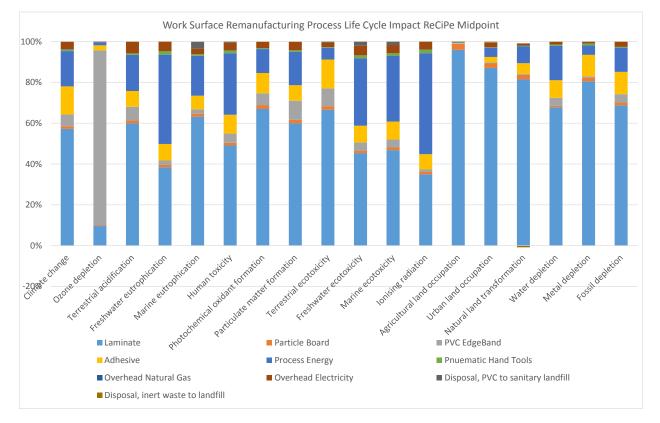
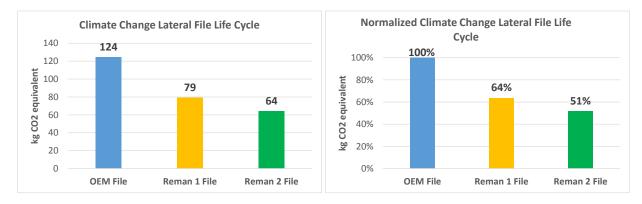
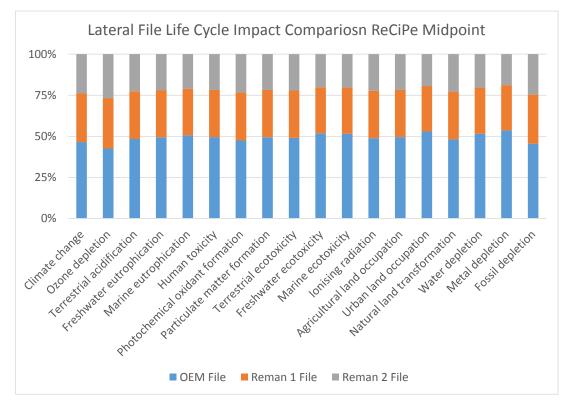




Figure 47: Remanufactured Work Surface Environmental Impacts

# **5.2.5** Lateral File (Combined life cycle method)

The lateral file has the least amount of impact reduction as compared to the panel and work surface for each of the remanufacturing life cycles, compared to the OEM. Reman 1 & 2 are 64 and 51 percent of the OEM.

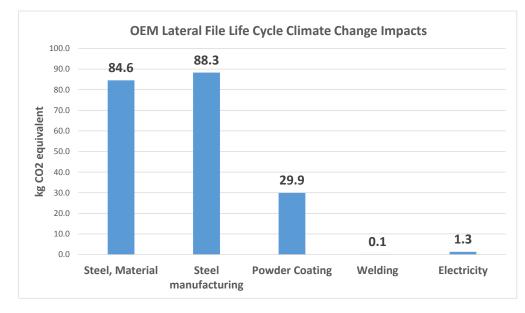





### Figure 48: Lateral File Life Cycle Climate Change Comparison

| Impact category                 | Unit         | OEM File | Reman 1<br>File | Reman 2 File |
|---------------------------------|--------------|----------|-----------------|--------------|
| Climate change                  | kg CO2 eq    | 124      | 79              | 64           |
| Ozone depletion                 | kg CFC-11 eq | 1.29E-05 | 9.31E-06        | 8.12E-06     |
| Terrestrial acidification       | kg SO2 eq    | 0.40     | 0.24            | 0.19         |
| Freshwater eutrophication       | kg P eq      | 0.07     | 0.04            | 0.03         |
| Marine eutrophication           | kg N eq      | 0.04     | 0.02            | 0.01         |
| Human toxicity                  | kg 1,4-DB eq | 57.93    | 33.62           | 25.51        |
| Photochemical oxidant formation | kg NMVOC     | 0.28     | 0.17            | 0.14         |
| Particulate matter formation    | kg PM10 eq   | 0.18     | 0.10            | 0.08         |
| Terrestrial ecotoxicity         | kg 1,4-DB eq | 0.01     | 0.01            | 0.00         |
| Freshwater ecotoxicity          | kg 1,4-DB eq | 2.56     | 1.39            | 1.00         |
| Marine ecotoxicity              | kg 1,4-DB eq | 2.46     | 1.34            | 0.97         |
| Ionising radiation              | kBq U235 eq  | 41.57    | 24.60           | 18.94        |
| Agricultural land occupation    | m2a          | 2.31     | 1.34            | 1.01         |
| Urban land occupation           | m2a          | 1.66     | 0.87            | 0.61         |
| Natural land transformation     | m2           | 0.03     | 0.02            | 0.01         |
| Water depletion                 | m3           | 1.41     | 0.77            | 0.56         |
| Metal depletion                 | kg Fe eq     | 37.68    | 19.37           | 13.26        |
| Fossil depletion                | kg oil eq    | 37.37    | 24.52           | 20.23        |

Table 18: ReCiPe Midpoint Lateral File Life Cycle Impact






# Figure 49: ReCiPe Midpoint Lateral File Life Cycle Impact

As with the panel, the steel material manufacturing is the main contributor to the environmental impacts followed by powder coating.





### Figure 50: OEM Lateral File Climate Change Impacts

The greatest impact to remanufacturing is from the powder coating of the files. The other processes use minimal energy and materials.

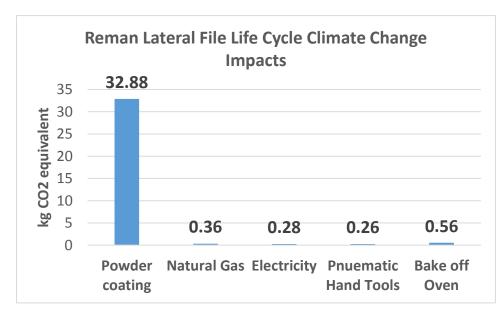
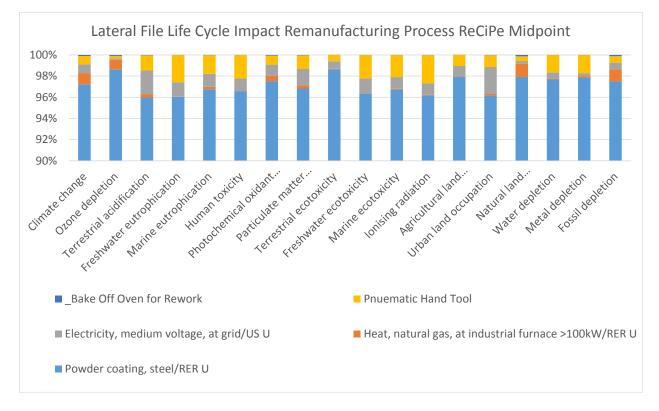




Figure 51: Reman Lateral File Climate Change Impacts



• Powder Coating is identified as a significant contributor to the life cycle impacts for the remanufactured file and pedestal illustrated in Figure 52. The inventory data identifies the presence of Chrysotile (asbestos) which can be traced back to the powder coat process.





# 5.3 Sensitivity Analysis

A sensitivity analysis was performed for the Davies remanufactured office system for several parameters. The parameters chosen were transportation distance, replacement rates of materials for the components analyzed, packaging materials and production impacts due to energy production fuel mix. Davies provided typical replacement rates for components based on how often a part may not be reused due to damage or other defects. Higher replacement rates will likely result in worse environmental impact. There are many scenarios that could be explored in the sensitivity analysis, but this analysis focused on those situations that could reasonably occur.

Transportation was chosen due to the fact that Davies has to ship the office system core back to their location for remanufacture and then back to the client. This would suggest that remanufactured



transportation distances would be greater than OEM distances. Secondly weights of the office systems will vary between the OEM and Reman. Panels that are indexed will have a reduced weight, while additional laminate added to the work surface over the old laminate will add weight to the system. Distance traveled for the reman product was varied to determine how the impacts are influenced by this measure. The results of this may also be of interest to Davies in determining other methods of remanufacture that might reduce the impacts of transportation and where this would be most beneficial.

Replacement rates of materials during Davies process are assumed accurate, however it was of interest to understand the potential impact when material replacement rates increased. It was of particular interest to evaluate the effects of increased material use during subsequent life cycles. Davies does not currently have a standardized method for tracking how many times a product has been through the remanufacturing process, therefore change in replacement rates may differ from the first to the second reman cycle.

Energy production by fuel type varies by location, where some areas favor more energy from renewable sources such as wind, solar and hydroelectric. While other areas favor production from fossil fuels such as coal and petroleum products. Variation in energy production by fuel type may have a discernable impact on the environmental results. The main study assumed both OEM and Davies used the average US energy mix. This was done to eliminate location biased analysis regarding energy and eliminate that variability to identify other potential contributors within the manufacturing process. The original OEM LCA assumed an energy mix in Michigan, which was conducted in 2005 (Dietz 2005). It can be assumed that current OEM manufacturing occurs in Mexico, while Davies remanufacturing occurs in New York State. The energy mix sensitivity will evaluate the variation from the US average to that of the OEM compared to Davies. The fuel type by location and allocation can be seen in Table 19. The New York mix is predominately natural gas, nuclear and hydroelectric, with less than 2% coal and petroleum combined. Mexico has a comparable natural gas contribution but has a larger contribution from petroleum and coal primarily due to the lack of nuclear production. The US average has a significant contribution from coal and petroleum which could cause a shift in the impact results.



| Category          | New York <sup>34</sup> | Mexico <sup>35</sup> | Michigan <sup>36</sup> | US Avg <sup>37</sup> |
|-------------------|------------------------|----------------------|------------------------|----------------------|
| Petroleum-Fired   | 0.13%                  | 16.40%               | 0.12%                  | 5.66%                |
| Natural Gas-Fired | 47.24%                 | 50.40%               | 27.24%                 | 17.30%               |
| Coal-Fired        | 1.30%                  | 12.90%               | 37.56%                 | 47%                  |
| Nuclear           | 27.19%                 | 3.90%                | 28.80%                 | 19.60%               |
| Hydroelectric     | 19.75%                 | 13.80%               | 1.34%                  | 8.15%                |
| Other Renewables  | 4.38%                  | 2.54%                | 4.94%                  | 1.49%                |

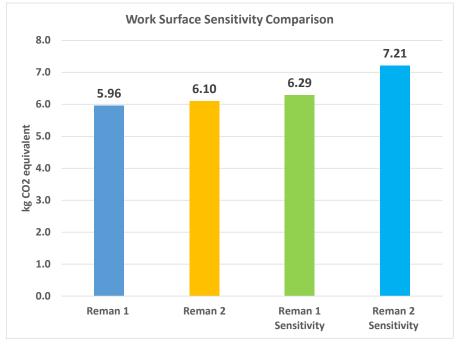
#### Table 19: Energy Mix by Fuel Type and Location

The main component in the work surface that was varied to test sensitivity was the replacement rate of the particle board. The original scenario as reported by Davies for replacement rates indicates that one out of every one hundred (1/100) work surfaces is not suitable for remanufacture and requires new particle board. The sensitivity scenario evaluated what the impact of increased replacement rates would be for the remanufactured work surface. Material, process energy, and disposal of the old materials are all included.

| Work Surface             | Original                                |                                         | Sensitivity 1                           |                                         |
|--------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Component<br>Description | Reuse<br>Yield<br>1 <sup>st</sup> Reuse | Reuse<br>Yield<br>2 <sup>nd</sup> Reuse | Reuse<br>Yield<br>1 <sup>st</sup> Reuse | Reuse<br>Yield<br>2 <sup>nd</sup> Reuse |
| Work Surface Core        | 99%                                     | 99%                                     | 95%                                     | 86%                                     |
| Laminate                 | 0%                                      | 0%                                      | 0%                                      | 0%                                      |
| PVC Edge band            | 0%                                      | 0%                                      | 0%                                      | 0%                                      |

### Table 20: Work surface Sensitivity Variation

Results of the sensitivity analysis for the work surface, Figure 53, show a minimal increase in climate change impact for increased replacement of particle board. The total increase for both life cycles is 1.44 kg CO2 equivalent.


<sup>&</sup>lt;sup>34</sup> US Energy Information Administration, New York Net Electricity Generation by Source Jun. 2016 <u>http://www.eia.gov/state/?sid=NY#tabs-4</u>

<sup>&</sup>lt;sup>35</sup> Center for Energy Economics Bureau of Economic Geology, The University of Texas and Austin and Instituto Tecnologico y de Estudios Superiores de Monterrey, Guide to Electric Power in Mexico, 2013 Second Edition

<sup>&</sup>lt;sup>36</sup> US Energy Information Administration, Michigan Net Electricity Generation by Source Jun. 2016 <u>http://www.eia.gov/state/?sid=MI#tabs-4</u>

<sup>&</sup>lt;sup>37</sup> Ecoinvent 3 Database





#### Figure 53: Work Surface Sensitivity Comparison for Climate Change

The sensitivity analysis for the panel, evaluated one panel that would not be indexed, focused on the potential variation of material inputs. As with the work surface, Davies provided the typical replacements for the panel materials. In the original scenario, only tack board is replaced at a rate of one out of every twenty (1/20) for both reman 1 and reman 2. The sensitivity scenario assumed a greater replacement rate for reman 1 and reman 2. Also considered was the replacement of the acoustical filler and chipboard divider as shown in Table 21.

| Panel                    | Original                                |                                         | Sensit                                  | ivity 1                                 |
|--------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Component<br>Description | Reuse<br>Yield<br>1 <sup>st</sup> Reuse | Reuse<br>Yield<br>2 <sup>nd</sup> Reuse | Reuse<br>Yield<br>1 <sup>st</sup> Reuse | Reuse<br>Yield<br>2 <sup>nd</sup> Reuse |
| Panel Frame with legs    | 100%                                    | 100%                                    | 100%                                    | 100%                                    |
| Тор Сар                  | 100%                                    | 100%                                    | 100%                                    | 100%                                    |
| side rails               | 0%                                      | 0%                                      | 0%                                      | 0%                                      |
| snap on frame            | 100%                                    | 100%                                    | 100%                                    | 100%                                    |
| Fabric Skin              | 0%                                      | 0%                                      | 0%                                      | 0%                                      |
| Tack Board               | 95%                                     | 95%                                     | 90%                                     | 85%                                     |
| Acoustical Filler        | 100%                                    | 100%                                    | 99%                                     | 97%                                     |
| Chipboard Divider        | 100%                                    | 100%                                    | 99%                                     | 97%                                     |

Table 21: Panel Sensitivity Variation



Sensitivity results for the panel, Figure 54, show that the climate change impact would only increase by a total of 1.72 kg CO2 equivalent.

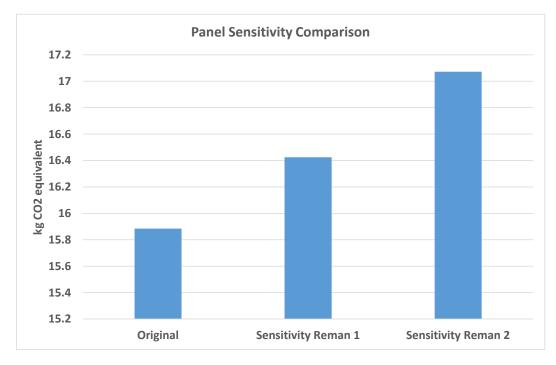



Figure 54: Panel Sensitivity Comparison for Climate Change

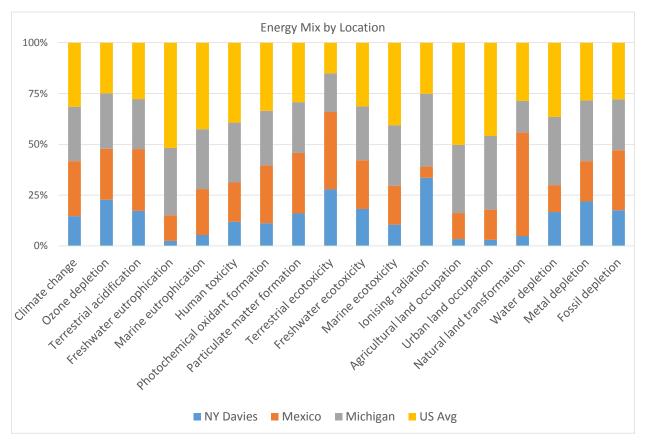
The transportation sensitivity analysis looked only at the variation of travel distance for the entire office system. The original travel distance for Davies is a weighted average based on annual sales by state. This sensitivity doubled the travel distance for remanufacturing, which in turn doubled the impact.

| Transport                  | Original Sensitivity 1 |         |         | ivity 1 |         |
|----------------------------|------------------------|---------|---------|---------|---------|
| Office System OEM          |                        | Reman 1 | Reman 2 | Reman 1 | Reman 2 |
|                            | tkm                    | tkm     | tkm     | tkm     | tkm     |
| Pick up from Customer /EOL | 14.7                   | 368     | 350     | 736     | 699     |
| Ship to Customer           | 110                    | 350     | 354     | 699     | 708     |

# Table 22: Transport Scenarios for Sensitivity Analysis

Figure 55 shows the variation of impact by increasing the total travel distance. One thing to note is the minor variations between the reman 1 and reman 2 for both the original and sensitivity scenarios. The reman 1 pickup from customer is greater than the ship to customer, Table 22. This is due to the indexing of the panels and reduction of the overall office system weight. For reman 2 there is an increase in the ship to customer due to the addition of laminate material to the work surfaces. Though there is a change

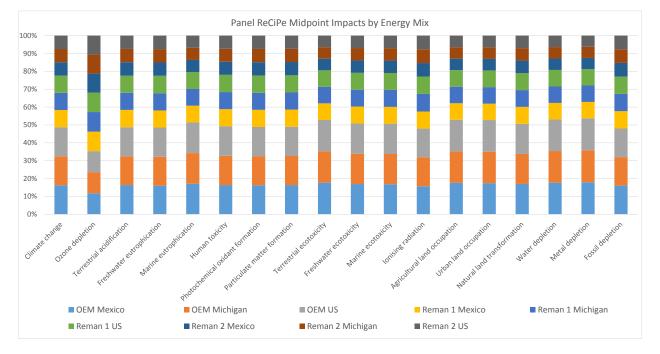



in the overall office system weight from one life cycle to the next, this provides minimal impact at the single office system level.

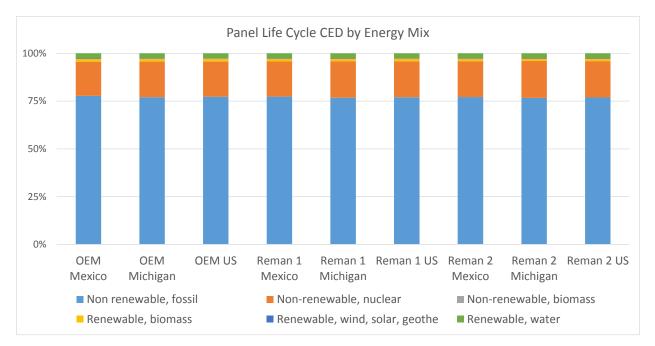


### Figure 55: Transportation Sensitivity Comparison for Climate Change

Comparison of the four energy mix scenarios in SimaPro, seen in Figure 56, shows the relative impacts of each. It can be seen that in most categories the New York mix has the least amount of impact while the US average appears to have the greatest impacts in general. The Michigan mix appears to be second behind the US average for impacts.







#### Figure 56: ReCiPe Midpoint Energy Mix Comparison

The sensitivity analysis for energy mix comparison used one representative product, which was a 65 x 48inch panel that is not indexed during the remanufacturing cycles. Each cycle starts with the OEM and ends with end of life disposition previously defined in this report. This sensitivity used the US average as the baseline, where the assumption is both the OEM and Davies use that energy mix. The other scenarios varied the OEM between the Mexico and Michigan energy mixes while Davies used the New York mix for both. The sensitivity was modeled using both the ReCiPe midpoint and CED methods where results can be seen in Figure 57 and Figure 58. The results indicate that the energy mix does not have a significant impact in the life cycles. This can be attributed to the fact that other contributors outweigh the production energy impacts, such as material production.









#### Figure 58: Panel CED Energy Mix Sensitivity by Life Cycle



The results of the environmental impacts for packaging are illustrated in Figure 59. The original OEM packaging from (Dietz 2005), Davies remanufactured packaging and an assumed improved OEM packaging representative of current conditions are compared. Reduction in the use of materials with increased use of recycled and recyclable materials reduces the environmental impacts.

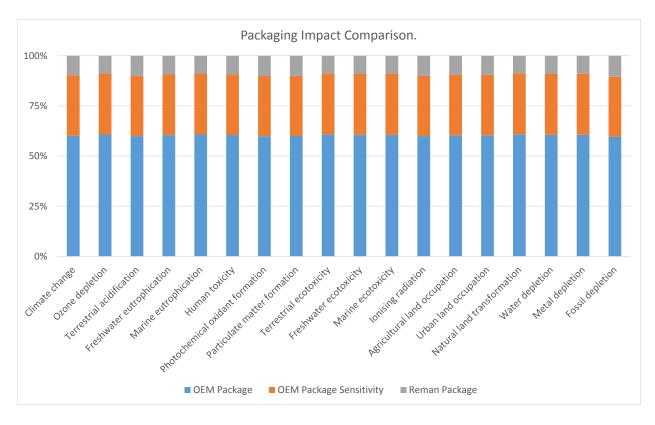



Figure 59: Packaging Impact and Sensitivity



# 6. Conclusion

It should be noted that the Dietz (2005) study, upon which OEM process models are based, focuses on the Steelcase Answer family of products rather than the Avenir system Davies remanufactures. However, because the Answer and Avenir product families share many of the same components and are produced at the same or similar OEM facility, it is reasonable to expect that they share many of the same manufacturing processes, and that this comparison is thus appropriate in the absence of other adequate OEM data. Physical comparison of the two systems yields myriad similarities, but processes corresponding to patent differences—such as the production of steel support legs in the Answer that are not found on the Avenir system—were carefully omitted in this study's representation of OEM manufacturing processes in order to preserve the accuracy of this comparison.

In this, it should be further noted that only process models drew from the Dietz (2005) study; specific material composition of the Avenir system is recognized to be unique. This data was not therefore modeled on Dietz (2005), but instead collected directly from Avenir core stocks at Davies under the assumption that gross material composition does not change significantly over the lifecycle of office workspace products. This data was then used to build OEM process models using SimaPro software and the Ecoinvent database in order to avoid the potential uncertainties of relying on somewhat dated modeling methodologies. Ultimately, then, the Dietz (2005) study effectively provided only a roadmap for the order and type of manufacturing processes used to make Steelcase products, and was not used to suggest the 2005 OEM Answer product as a wholesale surrogate for the OEM Avenir products in this study. In light of these considerations, adaptation of the OEM Answer manufacturing process is fundamentally appropriate, though not all elements of imprecision can be eliminated.

This study evaluated the life cycle environmental impacts associated with the manufacturing and remanufacturing of a typical office workspace system, including its various components—the work surface, lateral file, and divider panels. The OEM system, represented by models of known Steelcase manufacturing processes (Dietz 2005) adapted for contemporary product flows, was compared to a remanufactured system with the same configuration and layout built by Davies Office Furniture, Inc. Results of this comparison illustrate the overall environmental life cycle benefits of remanufacturing, and reinforce the notion that product life may be extended through the reuse of materials and components without compromising on cost, quality, or environmental impact. Beyond this, the above evaluations also identify areas in the remanufacturing process that contribute most to environmental impacts, providing new insight for stakeholders seeking to continuously improve these processes.



These assessments suggest that the production of virgin material—especially steel—is responsible for a majority of the impacts attributed to the OEM product. Davies' nearly complete reuse of the steel found in panel frames, file units, and storage pedestals virtually eliminates these impacts during the remanufacturing process, minimizing the remanufactured system's relative impacts in comparison. Davies' material use savings are compounded by their ability to maintain high reuse in work surface cores, primarily constructed from particle board, which can be refaced and relaminated as necessary without undue environmental burden. However, both the OEM process and Davies' remanufacturing process create notable impacts as a result of the powder coating process in which exposed metal components are finished or refinished. While this is a secondary contributor in the OEM process (as steel production is the dominant factor), powder coating represents Davies' single most impactful activity, contributing one and two orders of magnitude more to climate change impacts than electricity use and welding activities, respectively.

Ultimately, these results support the contention that remanufacturing can reduce the overall life cycle environmental impacts of office furniture products when compared with virgin production. Importantly, however, this study also explored subsequent cycles in which previously remanufactured systems were remanufactured a second time. These explorations estimate that subsequent remanufacturing cycles create environmental impacts effectively equivalent to-though in some measures actually even less than-the impacts of initial remanufacturing. This, then, suggests that due to the durability of office furniture products, remanufacturing in this case can be made a cyclic endeavor without incurring additional environmental impacts beyond those of a virgin product. Applying this notion in a broader sense, the potential to grow office furniture remanufacturing if its success does not hinge upon the availability of virgin OEM cores creates the possibility that eventually, remanufacturing previously remanufactured products may grow to offset some virgin production rather than simply supplement it, significantly reducing the impacts attributable to the industry market as a whole. This potential is supported by Davies' innovative practice of resizing office system components (typically by decreasing the overall height to promote a more open and collaborative office space), which not only allows Davies to keep up with evolving market trends, but also enables them to customize existing products during remanufacturing to the unique needs of their customers. Access to product options that might not be available from an OEM product offering can thus improve Davies' competitive stance against virgin production, further promoting the benefits of remanufacturing.

It is critical to acknowledge, however, that primary data was not available for the number of remanufacturing life cycles a particular component may have already experienced prior to entering what this study defines as its "Reman 2" lifecycle. The inherent variability of modeling scenarios available is a limiting factor which may impact results in either direction, as products entering "Reman 2" lifecycles may require more or less intense processing depending on how many cycles they had actually previously



endured. Data for material fallout and replacement was provided by Davies, where available, to gain some sense of these impacts, but replacement rates for components such as work surface cores and panel tack board for additional remanufacturing cycles could not be determined. To explore the effects of these potential variations, the sensitivity analyses documented in section 5.3 demonstrate the possibility of increased impacts in cases of higher replacement rates, though more data would be required to validate these replacement scenarios. In any case, however, total impacts of systems remanufactured either for the first or second time are likely to remain significantly less than those of OEM production.

In all of this, remanufacturing appears to hold its environmental preferability over virgin production in this study. While these benefits are popularly extrapolated to the industry sector as a whole, it must be stated that the results suggested in this study are specific to this particular case, and are themselves subject to the limitations in data outlined throughout this report. As a result, caution should be taken in using the data and result interpretations presented here; LCA results should not be the only source of a product's environmental profile. Limitations to the availability of OEM data and data quality should be considered when comparing life cycles, and comparisons to other products and other industries, or broad conclusions about the current or future state of remanufacturing economies cannot and should not be drawn from this study alone. The scope of this study is limited only to the specific products, processes, materials, and locations identified herein, which do not themselves necessarily serve as accurate representations of more diverse and complex industrial systems.



# 7. Appendix A: Data Sources

| Metric                                                                   | Value                          | Comments and Data Source                                                                                                                                                                                                   |
|--------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Davies Remanufacturing Facility                                          |                                |                                                                                                                                                                                                                            |
| Plant location                                                           | Albany, New York               | Data collected at Davies by GIS and provided by Davies Staff upon request.                                                                                                                                                 |
| Manufacturing Process energy<br>Overhead energy Electricity              | See Appendix B.                | Equipment energy derived from the OEM LCA (Dietz 2005). Remanufacturing Process times collected while observing each process. Overhead energy at Davies as calculated based on energy bills from august to September 2015. |
| Main Production/Warehouse                                                | 0.00043 kWh.sqft/hr            |                                                                                                                                                                                                                            |
| Showroom/Metal/Office                                                    | 0.00072 kWh.sqft/hr            |                                                                                                                                                                                                                            |
| Outlet                                                                   | 0.00098 kWh.sqft/hr            | Overhead based on process area and utility bills provided                                                                                                                                                                  |
| Overhead energy Natural Gas                                              |                                | by Davies                                                                                                                                                                                                                  |
| Main Production/Warehouse                                                | 0.0000824 kWh.sqft/hr          |                                                                                                                                                                                                                            |
| Showroom/Metal/Office                                                    | 0.00289 kWh.sqft/hr            |                                                                                                                                                                                                                            |
| Outlet                                                                   | NA                             |                                                                                                                                                                                                                            |
| Transportation                                                           |                                |                                                                                                                                                                                                                            |
| Shipping from client to Davies<br>and then back to client after<br>reman | 638 miles (1027 km) one<br>way | This assumes that the office system is recovered from the client and returned to Davies to be remanufactured and returned to the customer. A weighted average used based on client locations and sales dollars.            |
| End of Life                                                              |                                |                                                                                                                                                                                                                            |
| Recycling                                                                | 41 km                          | Assumed Value derived from OEM LCA (Dietz 2005)                                                                                                                                                                            |
| MSW                                                                      | 41 km                          | Assumed Value derived from OEM LCA (Dietz 2005)                                                                                                                                                                            |
| Metric                                                                   | Value                          | Comments and Data Source                                                                                                                                                                                                   |
| OEM Office                                                               |                                |                                                                                                                                                                                                                            |
| OEM plant location                                                       | Grand Rapids, Michigan         | Dietz 2005                                                                                                                                                                                                                 |
| Manufacturing Energy for panel                                           | 0.414 kwh/kg                   |                                                                                                                                                                                                                            |
| Manufacturing Energy for Work<br>Surface                                 | 0.7168 kWh/kg                  | Values derived from the Dietz 2005 study and based on mass. Overhead is included within these values.                                                                                                                      |
| Manufacturing Energy for panel                                           | 0.429 kWh/kg                   |                                                                                                                                                                                                                            |
| Transportation                                                           |                                |                                                                                                                                                                                                                            |
| To customer                                                              | 308 km                         | Dietz 2005                                                                                                                                                                                                                 |
| OEM Office EOL                                                           |                                |                                                                                                                                                                                                                            |



| Metric                 | Value | Comments and Data Source                                                                                                                                                                          |
|------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Percent Steel recycled | 100%  | It is assumed the EOL scenarios in the Dietz 2005 study<br>are not representative of today's practices and that all<br>steel is recovered for recycling from today's components<br>at end of life |
| Landfill               | 41 km | All remaining materials go to a landfill treatment. (Dietz 2005)                                                                                                                                  |



# 8. Appendix B: Davies Process Description and Intensity

| Equipment                   | kWh/min | cfm   |
|-----------------------------|---------|-------|
| Sanding                     | 0.417   | 0.17  |
| table saw                   | 0.167   | 0.03  |
| edgeband                    | 0.5     | 0.08  |
| pneumatic hand tools        | 0       | 24.33 |
| Drilling Steel              | 0.016   | 0.00  |
| Hot-melt station (fabric)   | 0.31    | 35    |
| Hot-laminating press (wood) | 0.53    | 17    |
| Hand tools                  | 0.007   | N/A   |
| Roller press                | 0.42    | 25    |

#### Table 23: Equipment energy and compressed air use <sup>38</sup>

| Process Name | Process Description                                                                       | Equipment Used                               | Reman 1<br>process<br>time (min) |
|--------------|-------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|
|              | Remove drawers,                                                                           | Cordless Drill                               | 1.0000                           |
| Disassembly  | screws tracks and<br>other hardware.<br>Pound out small<br>dents and dings                | Air powered hand buffer/grinder              | 0.333                            |
|              | Buff, grind, sand                                                                         | Air powered hand buffer/grinder              | 4.000                            |
|              | surface blemishes,<br>bondo large nicks                                                   | Degrease Drawer                              | NA                               |
| Paint Prep   | and dents. Clean off<br>surfaces. Mask any<br>surfaces such as<br>handles and<br>openings | Hand sander                                  | Incl. above                      |
|              | Hang work pieces                                                                          | Conveyor line                                |                                  |
| Paint and    | from overhead<br>conveyor line, final                                                     | Final wipe down while on line with tac cloth |                                  |
| Powder coat  | wipe down with tac cloth, automatic and                                                   | Automated and Manual spray guns              |                                  |

<sup>&</sup>lt;sup>38</sup> Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005



| Process Name   | Process Description                                                                                                                                                                     | Equipment Used           | Reman 1<br>process<br>time (min) |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|
|                | manual powder<br>coating then oven<br>curing.                                                                                                                                           | Spray booth exhaust hood | 29.933                           |
|                |                                                                                                                                                                                         | NG Oven                  |                                  |
| Rework         | 10% rework rate<br>where product has<br>to be re powder<br>coated. The<br>workpiece is baked<br>in a bake off oven at<br>high temp to remove<br>coatings and then<br>goes back to prep. |                          | 120.000                          |
| Final Assembly | Assemble<br>components,<br>hardware drawers<br>into shell and test<br>functionality.                                                                                                    | Electric Screw Gun       | 1.0000                           |

# Table 24: File and Pedestal Remanufacturing Process

| Process Name         | Process Description                                                           | Equipment Used      | Reman 1<br>process time<br>(min) |
|----------------------|-------------------------------------------------------------------------------|---------------------|----------------------------------|
|                      | New pressboard plug to fill grommets and                                      |                     | NA                               |
| Work Surface         | electrical outlet holes.                                                      |                     | NA                               |
| Preparation          | Remove old edge banding, patch nicks and                                      | Makita belt sander  | 4.9667                           |
|                      | dings, scuff surface with power sander                                        | Makita belt sander  |                                  |
|                      | lift work surface                                                             | Suction lift 250 lb | 0.167                            |
| Laminate preparation | New Laminate Cut for work surface from<br>large laminate sheets               | Table Saw           | 0.010                            |
|                      |                                                                               | Spray Gun           | 0.019                            |
| Work Surface         | Blow off dust from surfaces with                                              | . ,                 | 0.367                            |
| Lamination           | compressed air Spray adhesive on work surface and laminate, apply laminate to | Exhaust hood booth  | 0.367                            |
|                      | surface and familiate, apply familiate to                                     | IR oven             | 2                                |



| Process Name          | Process Description                                                                                                                                                                                                                             | Equipment Used          | Reman 1<br>process time<br>(min) |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|
|                       | work surface, roller press laminate onto                                                                                                                                                                                                        | Conveyor motor          | 3.717                            |
|                       | work surface after IR oven                                                                                                                                                                                                                      | Mechanical roller Press | 0.133                            |
|                       |                                                                                                                                                                                                                                                 | Air nozzle              | 0.083                            |
|                       | Laminate is mechanically pressed onto                                                                                                                                                                                                           |                         | 0.167                            |
| Post Forming          | edges of work surface one side at a time,<br>when one edge is complete worker uses an<br>air lift suction to move work surface back to<br>beginning for other side excess laminate<br>trimmed mechanically and suctioned into<br>dust collector | Post Former             | 1.200                            |
|                       | Excess laminate is trimmed with a router,<br>edges are sanded with a small electric belt                                                                                                                                                        | Router                  | 0.317                            |
|                       |                                                                                                                                                                                                                                                 | Makita belt sander      | 0.217                            |
|                       | sander, the work surface is then moved<br>with 250 lb air lift to the edge bander where                                                                                                                                                         |                         | 0.959                            |
| Edge Banding          | adhesive and pvc edge banding applied on<br>each side. After one side complete the work<br>surface is moved on a roller conveyor to the<br>beginning for the second side.                                                                       | Holtzer Edge Bander     | 0.959                            |
|                       | Work surfaces are manual wiped down,                                                                                                                                                                                                            | Air lift                | 0.167                            |
|                       | cleaned and rough edges finished. They are                                                                                                                                                                                                      |                         |                                  |
| Staging and Packaging | then packages with foam corner protectors<br>on alternate work surfaces in the stack, and                                                                                                                                                       |                         |                                  |
|                       | plastic wrapped or foam and plastic                                                                                                                                                                                                             |                         |                                  |
|                       | wrapped.                                                                                                                                                                                                                                        |                         |                                  |

# Table 25: Work Surface Remanufacturing Process

| Process Name      | Process Description                                                                                                                | Equipment Used      | Reman 1<br>process time<br>(min) |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
| Panel Disassembly | nel Disassembly remove external hardware, top cap and side rails,<br>remove 2 foam strips, remove panel, cut off<br>fabric, remove |                     | 0.33                             |
|                   |                                                                                                                                    | Electric Screw Gun  | na                               |
|                   |                                                                                                                                    | Band Saw            | 1.50                             |
|                   | Resizing external and internal steel frames, by                                                                                    | Air powered grinder | 0.50                             |
| Metal Indexing    | cutting and welding. Drill out connecting rivets of internal frame.                                                                | Welder              | 16.00<br>(inches)                |
|                   |                                                                                                                                    | Drill press         | 1.08                             |



| Process Name                 | Process Description                                                                           | Equipment Used          | Reman 1<br>process time<br>(min) |
|------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|----------------------------------|
| Acoustical panel<br>indexing | Cut down acoustical panel and batting material                                                | Table Saw               | 0.17                             |
|                              |                                                                                               | Hand cut fabric         | 0.00                             |
|                              |                                                                                               | Adhesive Sprayer        | 0.67                             |
|                              | Cut Upholstery fabric 2 inches oversized on all                                               | Exhaust Hood            | 2.00                             |
| Upholstery                   | edges, apply adhesive to fabric and internal frames. Mount fabric to internal frame and fiber | IR oven cure            |                                  |
|                              | board Trim excess fabric                                                                      | Conveyor                | 3.72                             |
|                              |                                                                                               |                         |                                  |
|                              |                                                                                               | Conveyor Rack           |                                  |
|                              |                                                                                               | Automatic Powder        |                                  |
|                              | Powder coat kick plates and top cap for panels                                                | Coating guns arms<br>x4 |                                  |
| Powder Coating               | and other metal trim and hardware (All hardware<br>for 1 cube can hang on 1 rack. See Images  | Manual pc guns          | 29.33                            |
|                              |                                                                                               |                         |                                  |
|                              |                                                                                               |                         |                                  |
|                              |                                                                                               | NG oven                 |                                  |
| Final Assembly               | Assemble all components into the final panel                                                  | Electric Screw Gun      | 0.08                             |

Table 26: Panel Remanufacturing Process



# 9. Appendix C: Office System Life Cycle Inventory Comparison

| Results:                          | Inventory                                         |  |  |  |
|-----------------------------------|---------------------------------------------------|--|--|--|
| Product 1:                        | 1 p OEM Office System (of projectDavies LCA)      |  |  |  |
| Product 2:                        | 1 p Reman 1 Office System (of project Davies LCA) |  |  |  |
| Product 3:                        | 1 p Reman 2 Office System (of project Davies LCA) |  |  |  |
| Method:                           | ReCiPe Midpoint (H) V1.11 / Europe Recipe H       |  |  |  |
| Indicator:                        | Inventory                                         |  |  |  |
| Compartment:                      | All compartments                                  |  |  |  |
| Per sub-compartment:              | No                                                |  |  |  |
| Default units:                    | No                                                |  |  |  |
| Exclude infrastructure processes: | No                                                |  |  |  |
| Exclude long-term emissions:      | No                                                |  |  |  |
| Sorted on item:                   | Main category                                     |  |  |  |
| Sort order:                       | Ascending                                         |  |  |  |

| Νο | Substance                                 | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|----|-------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 1  | Aluminium                                 | Raw         | g    | 794.31889            | 27.20261                    | 57.0289                     |
| 2  | Anhydrite                                 | Raw         | mg   | 119.71652            | 75.27315                    | 75.55038                    |
| 3  | Barite                                    | Raw         | g    | 414.03725            | 73.26839                    | 80.0664                     |
| 4  | Basalt                                    | Raw         | g    | 301.66186            | 7.793989                    | 11.08098                    |
| 5  | Borax                                     | Raw         | kg   | 1.1835895            | 5.84E-06                    | 5.98E-06                    |
| 6  | Bromine                                   | Raw         | g    | 1.107671             | 0.001533                    | 0.001572                    |
| 7  | Cadmium                                   | Raw         | mg   | 61.686172            | 12.1917                     | 10.19923                    |
| 8  | Calcite                                   | Raw         | kg   | 88.661855            | 0.238078                    | 5.683187                    |
| 9  | Carbon dioxide, in air                    | Raw         | kg   | 188.18833            | 9.514058                    | 14.44471                    |
| 10 | Carbon, organic, in soil or biomass stock | Raw         | mg   | 752.7388             | 222.8417                    | 226.5307                    |
| 11 | Chromium                                  | Raw         | kg   | 4.6546072            | -0.35618                    | 0.007624                    |
| 12 | Chrysotile                                | Raw         | mg   | 205.65722            | 90.0588                     | 90.87919                    |
| 13 | Cinnabar                                  | Raw         | mg   | 51.54126             | 40.02767                    | 40.81276                    |
| 14 | Clay, bentonite                           | Raw         | kg   | 2.4316527            | -0.17992                    | 0.006221                    |
| 15 | Clay, unspecified                         | Raw         | kg   | 19.148655            | 1.541783                    | 1.91672                     |



| No | Substance                                                            | Compartment | Unit      | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|----|----------------------------------------------------------------------|-------------|-----------|----------------------|-----------------------------|-----------------------------|
| 16 | Coal, brown                                                          | Raw         | kg        | 128.43046            | 19.86563                    | 22.26801                    |
| 17 | Coal, hard                                                           | Raw         | kg        | 294.94261            | 4.12994                     | 17.44095                    |
| 18 | Cobalt                                                               | Raw         | mg        | 6.2654966            | 3.801187                    | 3.80568                     |
| 19 | Colemanite                                                           | Raw         | kg        | 8.1555941            | 0.358557                    | 0.358565                    |
| 20 | Copper, 0.99% in sulfide,<br>Cu 0.36% and Mo 8.2E-3%<br>in crude ore | Raw         | g         | 19.328854            | 2.836742                    | 3.136222                    |
| 21 | Copper, 1.18% in sulfide,<br>Cu 0.39% and Mo 8.2E-3%<br>in crude ore | Raw         | g         | 105.34628            | 14.30309                    | 15.93222                    |
| 22 | Copper, 1.42% in sulfide,<br>Cu 0.81% and Mo 8.2E-3%<br>in crude ore | Raw         | g         | 27.944607            | 3.7941                      | 4.226248                    |
| 23 | Copper, 2.19% in sulfide,<br>Cu 1.83% and Mo 8.2E-3%<br>in crude ore | Raw         | g         | 138.98361            | 19.00721                    | 21.15152                    |
| 24 | Diatomite                                                            | Raw         | μg        | 26.002158            | 4.279331                    | 4.059062                    |
| 25 | Dolomite                                                             | Raw         | g         | 524.89318            | -37.5224                    | 0.984329                    |
| 26 | Energy, gross calorific value, in biomass                            | Raw         | MMBT<br>U | 1.9594721            | 0.09978                     | 0.151267                    |
| 27 | Energy, gross calorific<br>value, in biomass, primary<br>forest      | Raw         | kJ        | 52.186823            | 15.44945                    | 15.70521                    |
| 28 | Energy, kinetic (in wind), converted                                 | Raw         | MJ        | 52.739284            | 8.172975                    | 9.158813                    |
| 29 | Energy, potential (in<br>hydropower reservoir),<br>converted         | Raw         | MJ        | 607.18695            | 46.98859                    | 69.12471                    |
| 30 | Energy, solar, converted                                             | Raw         | kJ        | 829.73063            | 120.1677                    | 133.7426                    |
| 31 | Feldspar                                                             | Raw         | μg        | 768.40718            | 233.651                     | 235.4231                    |
| 32 | Fluorine                                                             | Raw         | g         | 1.8429786            | 0.103092                    | 0.161959                    |
| 33 | Fluorine, 4.5% in apatite, 3% in crude ore                           | Raw         | g         | 13.676059            | 0.048747                    | 0.074842                    |
| 34 | Fluorspar                                                            | Raw         | g         | 95.797543            | 9.037395                    | 9.44942                     |
| 35 | Gallium                                                              | Raw         | μg        | 2.2253553            | 0.333754                    | 0.373512                    |
| 36 | Gas, mine, off-gas,<br>process, coal mining/m3                       | Raw         | m3        | 2.6697101            | 0.007485                    | 0.13751                     |



| No | Substance                                                                  | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|----|----------------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 37 | Gas, natural/m3                                                            | Raw         | m3   | 155.92311            | 37.60626                    | 40.0215                     |
| 38 | Gold                                                                       | Raw         | μg   | 714.16716            | 314.8363                    | 317.9187                    |
| 39 | Gold, Au 1.1E-4%, Ag 4.2E-<br>3%, in ore                                   | Raw         | μg   | 325.2638             | 143.3906                    | 144.7945                    |
| 40 | Gold, Au 1.3E-4%, Ag 4.6E-<br>5%, in ore                                   | Raw         | μg   | 596.46333            | 262.9473                    | 265.5217                    |
| 41 | Gold, Au 2.1E-4%, Ag 2.1E-<br>4%, in ore                                   | Raw         | mg   | 1.0908145            | 0.480879                    | 0.485587                    |
| 42 | Gold, Au 4.3E-4%, in ore                                                   | Raw         | μg   | 270.34812            | 119.1814                    | 120.3482                    |
| 43 | Gold, Au 4.9E-5%, in ore                                                   | Raw         | μg   | 647.51812            | 285.4545                    | 288.2492                    |
| 44 | Gold, Au 6.7E-4%, in ore                                                   | Raw         | mg   | 1.0024632            | 0.44193                     | 0.446257                    |
| 45 | Gold, Au 7.1E-4%, in ore                                                   | Raw         | mg   | 1.1303813            | 0.498322                    | 0.503201                    |
| 46 | Gold, Au 9.7E-4%, Ag 9.7E-<br>4%, Zn 0.63%, Cu 0.38%,<br>Pb 0.014%, in ore | Raw         | μg   | 67.734821            | 29.86049                    | 30.15284                    |
| 47 | Granite                                                                    | Raw         | μg   | 412.57382            | 217.5363                    | 217.5724                    |
| 48 | Gravel                                                                     | Raw         | kg   | 161.75621            | 12.24512                    | 14.82074                    |
| 49 | Gypsum                                                                     | Raw         | mg   | 95.121237            | 16.32702                    | 19.18245                    |
| 50 | Indium                                                                     | Raw         | mg   | 1.138376             | 0.219757                    | 0.188524                    |
| 51 | Iodine                                                                     | Raw         | mg   | 102.31669            | 0.34238                     | 0.350928                    |
| 52 | Iron                                                                       | Raw         | kg   | 193.75543            | -15.2239                    | -0.16517                    |
| 53 | Kaolinite                                                                  | Raw         | g    | 3.78802              | 0.07045                     | 0.2355                      |
| 54 | Kieserite                                                                  | Raw         | mg   | 16.239063            | 2.008114                    | 2.41284                     |
| 55 | Lead                                                                       | Raw         | g    | 10.519256            | 1.039723                    | 0.989053                    |
| 56 | Lithium                                                                    | Raw         | mg   | 1.299723             | 0.00701                     | 0.007181                    |
| 57 | Magnesite                                                                  | Raw         | kg   | 2.6268074            | -0.20628                    | -0.00186                    |
| 58 | Magnesium                                                                  | Raw         | mg   | 9.1053238            | 1.40667                     | 1.591486                    |
| 59 | Manganese                                                                  | Raw         | kg   | 3.2712832            | -0.27137                    | -0.01214                    |
| 60 | Metamorphous rock, graphite containing                                     | Raw         | mg   | 642.53049            | 64.25542                    | 75.20799                    |
| 61 | Molybdenum                                                                 | Raw         | g    | 71.828257            | -5.93779                    | -0.24987                    |
| 62 | Molybdenum, 0.010% in sulfide, Mo 8.2E-3% and Cu 1.83% in crude ore        | Raw         | g    | 2.5828299            | 0.353224                    | 0.393073                    |



| No | Substance                                                           | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|----|---------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 63 | Molybdenum, 0.014% in sulfide, Mo 8.2E-3% and Cu 0.81% in crude ore | Raw         | mg   | 367.05458            | 49.83579                    | 55.51209                    |
| 64 | Molybdenum, 0.022% in sulfide, Mo 8.2E-3% and Cu 0.36% in crude ore | Raw         | g    | 35.590854            | -2.9416                     | -0.12333                    |
| 65 | Molybdenum, 0.025% in sulfide, Mo 8.2E-3% and Cu 0.39% in crude ore | Raw         | g    | 1.3450014            | 0.182614                    | 0.203413                    |
| 66 | Nickel, 1.13% in sulfide, Ni<br>0.76% and Cu 0.76% in<br>crude ore  | Raw         | g    | 3.4022904            | 0.949209                    | 1.015071                    |
| 67 | Nickel, 1.98% in silicates, 1.04% in crude ore                      | Raw         | kg   | 12.072975            | -0.9279                     | 0.015433                    |
| 68 | Occupation, arable                                                  | Raw         | m2a  | 13.362599            | 0                           | 0                           |
| 69 | Occupation, arable, non-<br>irrigated                               | Raw         | m2a  | 0.75085955           | 0.015119                    | 0.016195                    |
| 70 | Occupation, construction site                                       | Raw         | cm2a | 935.08196            | 67.58675                    | 100.77                      |
| 71 | Occupation, dump site                                               | Raw         | m2a  | 2.7063251            | 0.009381                    | 0.122363                    |
| 72 | Occupation, dump site,<br>benthos                                   | Raw         | cm2a | 478.75806            | 86.69969                    | 95.05599                    |
| 73 | Occupation, forest,<br>intensive                                    | Raw         | m2a  | 14.280988            | 12.27929                    | 12.29432                    |
| 74 | Occupation, forest,<br>intensive, normal                            | Raw         | m2a  | 64.126117            | 3.044126                    | 4.984479                    |
| 75 | Occupation, forest,<br>intensive, short-cycle                       | Raw         | cm2a | 130.90818            | 38.75421                    | 39.39577                    |
| 76 | Occupation, industrial area                                         | Raw         | m2a  | 1.1498144            | 0.021786                    | 0.073002                    |
| 77 | Occupation, industrial area, benthos                                | Raw         | mm2a | 438.48414            | 81.04255                    | 88.74089                    |
| 78 | Occupation, industrial area, built up                               | Raw         | m2a  | 2.1178678            | 0.021833                    | 0.07074                     |
| 79 | Occupation, industrial area, vegetation                             | Raw         | m2a  | 2.1291706            | 0.011672                    | 0.025213                    |
| 80 | Occupation, mineral extraction site                                 | Raw         | m2a  | 0.94034444           | 0.039596                    | 0.070409                    |



| No | Substance                                                                             | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|----|---------------------------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 81 | Occupation, permanent crop, fruit, intensive                                          | Raw         | cm2a | 232.50692            | 56.41054                    | 57.25589                    |
| 82 | Occupation, shrub land, sclerophyllous                                                | Raw         | cm2a | 597.46276            | 23.47041                    | 49.92555                    |
| 83 | Occupation, traffic area, rail network                                                | Raw         | m2a  | 0.2007288            | 0.015648                    | 0.024399                    |
| 84 | Occupation, traffic area, rail/road embankment                                        | Raw         | m2a  | 0.18152861           | 0.014151                    | 0.022065                    |
| 85 | Occupation, traffic area, road embankment                                             | Raw         | m2a  | 0.89906222           | 0.238046                    | 0.25655                     |
| 86 | Occupation, traffic area, road network                                                | Raw         | m2a  | 2.1120507            | 0.028592                    | 0.053462                    |
| 87 | Occupation, urban, discontinuously built                                              | Raw         | cm2a | 209.41521            | 0.352165                    | 0.365873                    |
| 88 | Occupation, water bodies, artificial                                                  | Raw         | m2a  | 0.90043636           | 0.101795                    | 0.117571                    |
| 89 | Occupation, water courses, artificial                                                 | Raw         | m2a  | 0.65557629           | 0.025239                    | 0.05308                     |
| 90 | Oil, crude                                                                            | Raw         | kg   | 69.602428            | 15.35446                    | 16.33851                    |
| 91 | Olivine                                                                               | Raw         | mg   | 78.33572             | 51.04634                    | 51.55199                    |
| 92 | Palladium, Pd 2.0E-4%, Pt<br>4.8E-4%, Rh 2.4E-5%, Ni<br>3.7E-2%, Cu 5.2E-2% in<br>ore | Raw         | μg   | 128.42952            | 36.33792                    | 37.67342                    |
| 93 | Palladium, Pd 7.3E-4%, Pt<br>2.5E-4%, Rh 2.0E-5%, Ni<br>2.3E+0%, Cu 3.2E+0% in<br>ore | Raw         | μg   | 308.63923            | 87.32655                    | 90.53601                    |
| 94 | Peat                                                                                  | Raw         | g    | 36.700369            | 17.67184                    | 17.74953                    |
| 95 | Phosphorus                                                                            | Raw         | g    | 54.902264            | 0.298122                    | 0.402541                    |
| 96 | Phosphorus, 18% in apatite, 4% in crude ore                                           | Raw         | g    | 7.3719144            | 0.41237                     | 0.647838                    |
| 97 | Platinum, Pt 2.5E-4%, Pd<br>7.3E-4%, Rh 2.0E-5%, Ni<br>2.3E+0%, Cu 3.2E+0% in<br>ore  | Raw         | μg   | 7.7432773            | 1.11183                     | 1.237678                    |
| 98 | Platinum, Pt 4.8E-4%, Pd<br>2.0E-4%, Rh 2.4E-5%, Ni                                   | Raw         | μg   | 27.758994            | 3.985817                    | 4.436969                    |



| No  | Substance                                                                           | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
|     | 3.7E-2%, Cu 5.2E-2% in ore                                                          |             |      |                      |                             |                             |
| 99  | Potassium chloride                                                                  | Raw         | g    | 381.55122            | 47.30805                    | 48.08517                    |
| 100 | Rhenium                                                                             | Raw         | μg   | 2.0945242            | 0.244344                    | 0.276768                    |
| 101 | Rhodium, Rh 2.0E-5%, Pt<br>2.5E-4%, Pd 7.3E-4%, Ni<br>2.3E+0%, Cu 3.2E+0% in<br>ore | Raw         | μg   | 2.3722573            | 0.307899                    | 0.34691                     |
| 102 | Rhodium, Rh 2.4E-5%, Pt<br>4.8E-4%, Pd 2.0E-4%, Ni<br>3.7E-2%, Cu 5.2E-2% in<br>ore | Raw         | μg   | 7.4301766            | 0.964373                    | 1.086563                    |
| 103 | Sand                                                                                | Raw         | g    | 15.004699            | 11.29333                    | 11.53527                    |
| 104 | Shale                                                                               | Raw         | mg   | 339.08566            | 213.1845                    | 213.9694                    |
| 105 | Silver, 0.007% in sulfide,<br>Ag 0.004%, Pb, Zn, Cd, In                             | Raw         | mg   | 7.4186143            | 3.199427                    | 3.234729                    |
| 106 | Silver, 3.2ppm in sulfide,<br>Ag 1.2ppm, Cu and Te, in<br>crude ore                 | Raw         | mg   | 5.2951668            | 2.282712                    | 2.30796                     |
| 107 | Silver, Ag 2.1E-4%, Au<br>2.1E-4%, in ore                                           | Raw         | μg   | 488.64131            | 210.7239                    | 213.0504                    |
| 108 | Silver, Ag 4.2E-3%, Au<br>1.1E-4%, in ore                                           | Raw         | mg   | 1.1160002            | 0.481269                    | 0.486582                    |
| 109 | Silver, Ag 4.6E-5%, Au<br>1.3E-4%, in ore                                           | Raw         | mg   | 1.0938673            | 0.471724                    | 0.476932                    |
| 110 | Silver, Ag 9.7E-4%, Au<br>9.7E-4%, Zn 0.63%, Cu<br>0.38%, Pb 0.014%, in ore         | Raw         | μg   | 721.79333            | 311.2694                    | 314.706                     |
| 111 | Sodium chloride                                                                     | Raw         | kg   | 21.39597             | 13.04224                    | 13.23689                    |
| 112 | Sodium nitrate                                                                      | Raw         | μg   | 1.104184             | 0.338377                    | 0.349946                    |
| 113 | Sodium sulfate                                                                      | Raw         | g    | 4.7195893            | 1.228296                    | 1.313018                    |
| 114 | Stibnite                                                                            | Raw         | μg   | 2.7021854            | 0.444715                    | 0.421824                    |
| 115 | Sulfur                                                                              | Raw         | g    | 149.12738            | 7.90282                     | 7.836862                    |
| 116 | Talc                                                                                | Raw         | g    | 6.2268921            | 5.099934                    | 5.122517                    |
| 117 | Tantalum                                                                            | Raw         | mg   | 5.8191597            | 2.520164                    | 2.547384                    |
| 118 | Tellurium                                                                           | Raw         | μg   | 794.28835            | 342.4125                    | 346.1998                    |
| 119 | Tin                                                                                 | Raw         | g    | 1.8820527            | 0.170183                    | 0.184943                    |



| No  | Substance                                                        | Compartment | Unit  | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|------------------------------------------------------------------|-------------|-------|----------------------|-----------------------------|-----------------------------|
| 120 | TiO2, 54% in ilmenite,<br>2.6% in crude ore                      | Raw         | kg    | 1.1687961            | 0.608237                    | 0.608563                    |
| 121 | TiO2, 95% in rutile, 0.40% in crude ore                          | Raw         | μg    | 491.61995            | 246.6368                    | 245.9759                    |
| 122 | Transformation, from arable                                      | Raw         | m2    | 13.363274            | 5.29E-05                    | 6.80E-05                    |
| 123 | Transformation, from arable, non-irrigated                       | Raw         | m2    | 1.3140875            | 0.027782                    | 0.029768                    |
| 124 | Transformation, from<br>arable, non-irrigated,<br>fallow         | Raw         | mm2   | 96.243628            | 3.230756                    | 6.84999                     |
| 125 | Transformation, from<br>dump site, inert material<br>landfill    | Raw         | cm2   | 30.639165            | 6.857898                    | 6.900629                    |
| 126 | Transformation, from<br>dump site, residual<br>material landfill | Raw         | cm2   | 84.848244            | -3.11872                    | 2.740062                    |
| 127 | Transformation, from dump site, sanitary landfill                | Raw         | mm2   | 147.42824            | 95.01578                    | 32.88806                    |
| 128 | Transformation, from<br>dump site, slag<br>compartment           | Raw         | mm2   | 239.50955            | 0.972818                    | 1.115013                    |
| 129 | Transformation, from forest                                      | Raw         | cm2   | 977.45268            | 145.298                     | 161.9576                    |
| 130 | Transformation, from forest, extensive                           | Raw         | sq.in | 905.88218            | 167.8986                    | 190.4169                    |
| 131 | Transformation, from<br>forest, intensive, clear-<br>cutting     | Raw         | mm2   | 467.53128            | 138.4085                    | 140.6998                    |
| 132 | Transformation, from industrial area                             | Raw         | cm2   | 13.052673            | 2.279086                    | 2.497015                    |
| 133 | Transformation, from industrial area, benthos                    | Raw         | mm2   | 4.0242167            | 0.861767                    | 0.935294                    |
| 134 | Transformation, from industrial area, built up                   | Raw         | mm2   | 1.8540635            | 0.145792                    | 0.229749                    |
| 135 | Transformation, from industrial area, vegetation                 | Raw         | mm2   | 3.1628145            | 0.248704                    | 0.391926                    |



| Νο  | Substance                                                      | Compartment | Unit  | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|----------------------------------------------------------------|-------------|-------|----------------------|-----------------------------|-----------------------------|
| 136 | Transformation, from<br>mineral extraction site                | Raw         | cm2   | 103.71472            | 9.108919                    | 12.21765                    |
| 137 | Transformation, from pasture and meadow                        | Raw         | cm2   | 248.26304            | 10.68775                    | 21.09263                    |
| 138 | Transformation, from<br>pasture and meadow,<br>intensive       | Raw         | cm2   | 10.729632            | 0.22669                     | 0.242902                    |
| 139 | Transformation, from sea and ocean                             | Raw         | cm2   | 479.85157            | 86.81033                    | 95.17654                    |
| 140 | Transformation, from shrub land, sclerophyllous                | Raw         | cm2   | 153.05095            | 6.13844                     | 12.88237                    |
| 141 | Transformation, from tropical rain forest                      | Raw         | mm2   | 467.53128            | 138.4085                    | 140.6998                    |
| 142 | Transformation, from unknown                                   | Raw         | sq.in | 282.93762            | 2.713474                    | 10.52627                    |
| 143 | Transformation, to arable                                      | Raw         | m2    | 13.375997            | 0.002209                    | 0.002516                    |
| 144 | Transformation, to arable, non-irrigated                       | Raw         | m2    | 1.3158322            | 0.027804                    | 0.029793                    |
| 145 | Transformation, to arable, non-irrigated, fallow               | Raw         | mm2   | 174.07118            | 9.155964                    | 14.43302                    |
| 146 | Transformation, to dump site                                   | Raw         | cm2   | 195.66471            | 0.800067                    | 8.69803                     |
| 147 | Transformation, to dump site, benthos                          | Raw         | cm2   | 478.75806            | 86.69969                    | 95.05599                    |
| 148 | Transformation, to dump site, inert material landfill          | Raw         | cm2   | 30.639165            | 6.857898                    | 6.900629                    |
| 149 | Transformation, to dump<br>site, residual material<br>landfill | Raw         | cm2   | 84.848856            | -3.11868                    | 2.740105                    |
| 150 | Transformation, to dump site, sanitary landfill                | Raw         | mm2   | 147.42824            | 95.01578                    | 32.88806                    |
| 151 | Transformation, to dump site, slag compartment                 | Raw         | mm2   | 239.50955            | 0.972818                    | 1.115013                    |
| 152 | Transformation, to forest                                      | Raw         | cm2   | 134.80052            | 5.077036                    | 10.97058                    |
| 153 | Transformation, to forest, intensive                           | Raw         | cm2   | 950.94121            | 817.6365                    | 818.6374                    |
| 154 | Transformation, to forest, intensive, clear-cutting            | Raw         | mm2   | 467.53128            | 138.4085                    | 140.6998                    |



| No  | Substance                                                   | Compartment | Unit  | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------------------------------------------|-------------|-------|----------------------|-----------------------------|-----------------------------|
| 155 | Transformation, to forest, intensive, normal                | Raw         | sq.in | 748.0541             | 38.56891                    | 60.70515                    |
| 156 | Transformation, to forest, intensive, short-cycle           | Raw         | mm2   | 467.53128            | 138.4085                    | 140.6998                    |
| 157 | Transformation, to heterogeneous, agricultural              | Raw         | cm2   | 46.565066            | 7.010468                    | 7.787862                    |
| 158 | Transformation, to industrial area                          | Raw         | cm2   | 233.31629            | 0.985508                    | 12.12483                    |
| 159 | Transformation, to industrial area, benthos                 | Raw         | mm2   | 109.35405            | 11.06547                    | 12.05676                    |
| 160 | Transformation, to industrial area, built up                | Raw         | cm2   | 413.01321            | 4.944855                    | 14.80713                    |
| 161 | Transformation, to industrial area, vegetation              | Raw         | cm2   | 428.74315            | 2.651576                    | 5.382581                    |
| 162 | Transformation, to mineral extraction site                  | Raw         | sq.in | 184.22963            | 19.3691                     | 24.22995                    |
| 163 | Transformation, to<br>pasture and meadow                    | Raw         | mm2   | 730.08432            | 133.8713                    | 146.2295                    |
| 164 | Transformation, to<br>permanent crop, fruit,<br>intensive   | Raw         | mm2   | 327.30313            | 79.40988                    | 80.59989                    |
| 165 | Transformation, to sea and ocean                            | Raw         | mm2   | 4.0242167            | 0.861767                    | 0.935294                    |
| 166 | Transformation, to shrub<br>land, sclerophyllous            | Raw         | cm2   | 119.35679            | 4.699069                    | 9.980722                    |
| 167 | Transformation, to traffic area, rail network               | Raw         | mm2   | 464.2945             | 36.19337                    | 56.43674                    |
| 168 | Transformation, to traffic<br>area, rail/road<br>embankment | Raw         | mm2   | 422.40313            | 32.92781                    | 51.34471                    |
| 169 | Transformation, to traffic area, road embankment            | Raw         | cm2   | 65.231173            | 16.12742                    | 17.53103                    |
| 170 | Transformation, to traffic area, road network               | Raw         | cm2   | 232.833              | 4.010254                    | 7.885284                    |
| 171 | Transformation, to unknown                                  | Raw         | cm2   | 29.543779            | 2.053925                    | 2.84561                     |



| Νο  | Substance                                                                | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|--------------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 172 | Transformation, to urban, discontinuously built                          | Raw         | mm2  | 417.1416             | 0.70149                     | 0.728795                    |
| 173 | Transformation, to water bodies, artificial                              | Raw         | cm2  | 70.502964            | 7.293941                    | 8.631414                    |
| 174 | Transformation, to water courses, artificial                             | Raw         | cm2  | 76.619725            | 3.038372                    | 6.311897                    |
| 175 | Ulexite                                                                  | Raw         | mg   | 98.945207            | 16.15685                    | 17.96513                    |
| 176 | Uranium                                                                  | Raw         | g    | 6.1528328            | 0.977795                    | 1.068838                    |
| 177 | Vermiculite                                                              | Raw         | mg   | 521.07016            | 3.670469                    | 4.566597                    |
| 178 | Volume occupied, final<br>repository for low-active<br>radioactive waste | Raw         | cm3  | 11.704769            | 1.690554                    | 1.879409                    |
| 179 | Volume occupied, final<br>repository for radioactive<br>waste            | Raw         | cm3  | 2.8857475            | 0.423915                    | 0.472257                    |
| 180 | Volume occupied,<br>reservoir                                            | Raw         | m3y  | 7.3097215            | 1.02917                     | 1.144149                    |
| 181 | Volume occupied,<br>underground deposit                                  | Raw         | cm3  | 40.75011             | 8.06524                     | 9.538492                    |
| 182 | Water, cooling,<br>unspecified natural<br>origin/m3                      | Raw         | m3   | 19.356059            | 3.99502                     | 4.196977                    |
| 183 | Water, lake                                                              | Raw         | dm3  | 548.74774            | 3.86557                     | 4.808778                    |
| 184 | Water, river                                                             | Raw         | m3   | 5.7510749            | 0.367366                    | 0.427629                    |
| 185 | Water, salt, ocean                                                       | Raw         | dm3  | 433.79489            | 76.00445                    | 84.29693                    |
| 186 | Water, salt, sole                                                        | Raw         | dm3  | 511.71208            | 5.614395                    | 6.297185                    |
| 187 | Water, turbine use,<br>unspecified natural origin                        | Raw         | MI   | 5.5837176            | 0.254005                    | 0.4907                      |
| 188 | Water, unspecified natural origin/m3                                     | Raw         | m3   | 4.3443917            | 0.145217                    | 0.402594                    |
| 189 | Water, well, in ground                                                   | Raw         | m3   | 7.3251175            | 0.080842                    | 0.108056                    |
| 190 | Wood, hard, standing                                                     | Raw         | dm3  | 50.0649              | 0.898019                    | 2.31961                     |
| 191 | Wood, primary forest, standing                                           | Raw         | cm3  | 4.8408191            | 1.433082                    | 1.456806                    |
| 192 | Wood, soft, standing                                                     | Raw         | dm3  | 151.69197            | 9.923339                    | 13.8681                     |
| 193 | Wood, unspecified, standing/m3                                           | Raw         | cm3  | 31.703993            | 23.71522                    | 24.20861                    |



| No  | Substance                              | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|----------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 194 | Zinc                                   | Raw         | g    | 157.87027            | 12.5824                     | 13.79753                    |
| 195 | Zirconium                              | Raw         | mg   | 7.8121361            | 3.437586                    | 3.471609                    |
| 196 | 1-Butanol                              | Air         | μg   | 38.943652            | 0.007533                    | 0.007866                    |
| 197 | 1-Pentanol                             | Air         | μg   | 24.564285            | 0.132491                    | 0.135711                    |
| 198 | 1-Pentene                              | Air         | μg   | 18.562721            | 0.100121                    | 0.102555                    |
| 199 | 1-Propanol                             | Air         | μg   | 341.93012            | 2.491742                    | 2.705839                    |
| 200 | 1,4-Butanediol                         | Air         | μg   | 116.15712            | 0.865209                    | 0.874921                    |
| 201 | 2-Aminopropanol                        | Air         | μg   | 24.098408            | 0.001784                    | 0.002009                    |
| 202 | 2-Butene, 2-methyl-                    | Air         | ng   | 4.1174492            | 0.022208                    | 0.022748                    |
| 203 | 2-Methyl-1-propanol                    | Air         | μg   | 130.41497            | 0.23228                     | 0.238085                    |
| 204 | 2-Nitrobenzoic acid                    | Air         | μg   | 53.581075            | 0.001613                    | 0.001982                    |
| 205 | 2-Propanol                             | Air         | mg   | 35.445905            | 15.58382                    | 15.73619                    |
| 206 | Acenaphthene                           | Air         | μg   | 11.166818            | 0.697583                    | 0.612112                    |
| 207 | Acetaldehyde                           | Air         | mg   | 239.18803            | 66.67875                    | 69.85796                    |
| 208 | Acetic acid                            | Air         | g    | 3.835775             | 2.101536                    | 2.127946                    |
| 209 | Acetone                                | Air         | mg   | 189.89481            | 42.79312                    | 45.50907                    |
| 210 | Acetonitrile                           | Air         | μg   | 508.30001            | 150.4778                    | 152.9688                    |
| 211 | Acrolein                               | Air         | mg   | 6.4009347            | 0.408047                    | 0.352962                    |
| 212 | Acrylic acid                           | Air         | μg   | 91.466449            | 40.32194                    | 40.71686                    |
| 213 | Actinides, radioactive,<br>unspecified | Air         | Bq   | 40.740645            | 2.226986                    | 1.824206                    |
| 214 | Aerosols, radioactive,<br>unspecified  | Air         | Bq   | 3.5967678            | 0.421866                    | 0.45069                     |
| 215 | Aldehydes, unspecified                 | Air         | mg   | 78.656462            | 23.28336                    | 23.2477                     |
| 216 | Aluminium                              | Air         | g    | 74.155041            | -0.28959                    | 3.384135                    |
| 217 | Ammonia                                | Air         | g    | 94.308354            | 8.074792                    | 10.05229                    |
| 218 | Ammonium carbonate                     | Air         | mg   | 1.1354421            | 0.144825                    | 0.157172                    |
| 219 | Aniline                                | Air         | μg   | 152.75518            | 0.558312                    | 0.571925                    |
| 220 | Anthranilic acid                       | Air         | μg   | 41.250786            | 0.00118                     | 0.001449                    |
| 221 | Antimony                               | Air         | mg   | 546.91499            | 28.93587                    | 29.17624                    |
| 222 | Antimony-124                           | Air         | μBq  | 12.400202            | 1.598386                    | 1.830431                    |
| 223 | Antimony-125                           | Air         | μBq  | 129.40652            | 16.68049                    | 19.10208                    |
| 224 | Argon-41                               | Air         | kBq  | 1.1314777            | 0.179683                    | 0.202594                    |
| 225 | Arsenic                                | Air         | mg   | 558.12132            | 24.90798                    | 35.28595                    |



| No  | Substance                           | Compartment | Unit  | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------------------|-------------|-------|----------------------|-----------------------------|-----------------------------|
| 226 | Arsine                              | Air         | ng    | 1.0661619            | 0.470005                    | 0.474609                    |
| 227 | Barium                              | Air         | mg    | 157.74592            | 8.174415                    | 13.91377                    |
| 228 | Barium-140                          | Air         | mBq   | 8.4177016            | 1.085041                    | 1.242562                    |
| 229 | Benzal chloride                     | Air         | ng    | 21.501826            | 1.171507                    | 0.958027                    |
| 230 | Benzaldehyde                        | Air         | μg    | 251.6548             | 42.10825                    | 43.32623                    |
| 231 | Benzene                             | Air         | g     | 11.669331            | 3.81358                     | 3.951109                    |
| 232 | Benzene, 1-methyl-2-<br>nitro-      | Air         | μg    | 46.268567            | 0.001393                    | 0.001712                    |
| 233 | Benzene, 1,2-dichloro-              | Air         | μg    | 196.87687            | 0.249307                    | 0.261111                    |
| 234 | Benzene, ethyl-                     | Air         | mg    | 92.13578             | 14.86185                    | 16.21737                    |
| 235 | Benzene, hexachloro-                | Air         | mg    | 1.8295476            | -0.14135                    | -0.00113                    |
| 236 | Benzene, pentachloro-               | Air         | μg    | 74.73441             | 0.924927                    | 1.035912                    |
| 237 | Benzo(a)pyrene                      | Air         | mg    | 11.569953            | 0.618323                    | 1.132516                    |
| 238 | Beryllium                           | Air         | mg    | 1.9617358            | 0.075064                    | 0.143789                    |
| 239 | Boron                               | Air         | g     | 3.6706468            | 0.502188                    | 0.576672                    |
| 240 | Boron trifluoride                   | Air         | pg    | 14.591193            | 6.43236                     | 6.49536                     |
| 241 | Bromine                             | Air         | mg    | 469.46136            | 57.40867                    | 64.90033                    |
| 242 | Butadiene                           | Air         | μg    | 16.899455            | 0.550197                    | 0.557597                    |
| 243 | Butane                              | Air         | g     | 7.9190221            | 1.312789                    | 1.434356                    |
| 244 | Butene                              | Air         | mg    | 102.8815             | 8.530469                    | 9.717115                    |
| 245 | Butyrolactone                       | Air         | ng    | 553.05623            | 241.8502                    | 244.329                     |
| 246 | Cadmium                             | Air         | mg    | 150.57586            | 10.32219                    | 11.47712                    |
| 247 | Calcium                             | Air         | g     | 4.4189522            | 0.482266                    | 0.582921                    |
| 248 | Carbon-14                           | Air         | kBq   | 8.8670834            | 1.396061                    | 1.572422                    |
| 249 | Carbon dioxide, biogenic            | Air         | kg    | 52.725388            | 5.748862                    | 5.797203                    |
| 250 | Carbon dioxide, fossil              | Air         | tn.lg | 1.0623844            | 0.130076                    | 0.157769                    |
| 251 | Carbon dioxide, land transformation | Air         | g     | 41.035223            | 6.567817                    | 6.993054                    |
| 252 | Carbon disulfide                    | Air         | g     | 3.62831              | 0.099693                    | 0.268425                    |
| 253 | Carbon monoxide,<br>biogenic        | Air         | g     | 17.380821            | 2.129564                    | 2.323428                    |
| 254 | Carbon monoxide, fossil             | Air         | kg    | 5.9008293            | -0.31581                    | 0.116538                    |
| 255 | Cerium-141                          | Air         | mBq   | 2.0406416            | 0.263039                    | 0.301225                    |
| 256 | Cesium-134                          | Air         | μBq   | 97.733598            | 12.59786                    | 14.42675                    |



| No  | Substance                                             | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 257 | Cesium-137                                            | Air         | mBq  | 1.732499             | 0.223319                    | 0.255739                    |
| 258 | Chloramine                                            | Air         | μg   | 144.17906            | 0.46715                     | 0.478885                    |
| 259 | Chlorine                                              | Air         | g    | 15.287103            | 9.66151                     | 9.789706                    |
| 260 | Chloroacetic acid                                     | Air         | mg   | 4.0026888            | 0.002134                    | 0.002907                    |
| 261 | Chloroform                                            | Air         | mg   | 2.7762711            | 0.159328                    | 0.142363                    |
| 262 | Chlorosilane, trimethyl-                              | Air         | μg   | 150.66987            | 4.574758                    | 6.205687                    |
| 263 | Chlorosulfonic acid                                   | Air         | μg   | 37.17027             | 0.011663                    | 0.014227                    |
| 264 | Chromium                                              | Air         | g    | 16.272254            | -1.16053                    | 0.057126                    |
| 265 | Chromium-51                                           | Air         | μBq  | 130.76394            | 16.85547                    | 19.30245                    |
| 266 | Chromium VI                                           | Air         | mg   | 403.48596            | -29.7004                    | 1.382294                    |
| 267 | Cobalt                                                | Air         | mg   | 247.51274            | -10.354                     | 6.706401                    |
| 268 | Cobalt-58                                             | Air         | μBq  | 182.09418            | 23.47193                    | 26.87946                    |
| 269 | Cobalt-60                                             | Air         | mBq  | 1.6086327            | 0.207353                    | 0.237455                    |
| 270 | Copper                                                | Air         | g    | 1.608646             | 0.058613                    | 0.121579                    |
| 271 | Cumene                                                | Air         | g    | 8.4067383            | 4.140481                    | 4.143456                    |
| 272 | Cyanide                                               | Air         | mg   | 362.98314            | -0.77934                    | 12.65803                    |
| 273 | Cyanoacetic acid                                      | Air         | μg   | 30.440559            | 0.009552                    | 0.011652                    |
| 274 | Diethylamine                                          | Air         | μg   | 75.081485            | 0.248883                    | 0.255052                    |
| 275 | Dimethyl malonate                                     | Air         | μg   | 38.172967            | 0.011978                    | 0.014611                    |
| 276 | Dinitrogen monoxide                                   | Air         | g    | 43.669642            | 10.74268                    | 11.0421                     |
| 277 | Dioxin, 2,3,7,8<br>Tetrachlorodibenzo-p-              | Air         | μg   | 5.5585474            | 3.399813                    | 3.6031                      |
| 278 | Dipropylamine                                         | Air         | μg   | 34.101574            | 0.158018                    | 0.161827                    |
| 279 | Ethane                                                | Air         | g    | 26.677121            | 4.925258                    | 5.493169                    |
| 280 | Ethane, 1,1-difluoro-, HFC-<br>152a                   | Air         | μg   | 289.4141             | 43.36384                    | 48.52182                    |
| 281 | Ethane, 1,1,1-trichloro-,<br>HCFC-140                 | Air         | μg   | 393.76355            | 21.52399                    | 17.63105                    |
| 282 | Ethane, 1,1,1,2-<br>tetrafluoro-, HFC-134a            | Air         | mg   | 34.274024            | 7.415606                    | 6.134909                    |
| 283 | Ethane, 1,1,2-trichloro-<br>1,2,2-trifluoro-, CFC-113 | Air         | μg   | 4.340961             | 1.913663                    | 1.932406                    |
| 284 | Ethane, 1,2-dichloro-                                 | Air         | mg   | 267.51466            | 147.2394                    | 150.7319                    |



| No  | Substance                                                  | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 285 | Ethane, 1,2-dichloro-<br>1,1,2,2-tetrafluoro-, CFC-<br>114 | Air         | mg   | 6.1780031            | 0.705582                    | 0.752173                    |
| 286 | Ethane, hexafluoro-, HFC-<br>116                           | Air         | mg   | 7.3806542            | 0.984481                    | 1.160446                    |
| 287 | Ethanol                                                    | Air         | mg   | 231.52292            | 37.21365                    | 41.11159                    |
| 288 | Ethene                                                     | Air         | g    | 5.280787             | 0.159666                    | 0.499245                    |
| 289 | Ethene, chloro-                                            | Air         | mg   | 133.90207            | 72.16049                    | 73.85455                    |
| 290 | Ethene, tetrachloro-                                       | Air         | g    | 14.465398            | 4.64E-05                    | 3.80E-05                    |
| 291 | Ethyl acetate                                              | Air         | mg   | 165.40719            | 72.75825                    | 73.48186                    |
| 292 | Ethyl cellulose                                            | Air         | μg   | 332.03263            | 146.3824                    | 147.8155                    |
| 293 | Ethylamine                                                 | Air         | μg   | 234.88174            | 0.11998                     | 0.124275                    |
| 294 | Ethylene diamine                                           | Air         | μg   | 189.48218            | 2.514626                    | 2.588285                    |
| 295 | Ethylene oxide                                             | Air         | mg   | 39.148357            | 30.41336                    | 30.31255                    |
| 296 | Ethyne                                                     | Air         | mg   | 310.27304            | -15.2408                    | 6.435699                    |
| 297 | Fluorine                                                   | Air         | mg   | 398.13195            | 40.09383                    | 50.7769                     |
| 298 | Fluosilicic acid                                           | Air         | mg   | 8.268021             | 0.995208                    | 1.199206                    |
| 299 | Formaldehyde                                               | Air         | g    | 11.03676             | 2.300738                    | 2.515946                    |
| 300 | Formamide                                                  | Air         | μg   | 44.925702            | 0.242316                    | 0.248205                    |
| 301 | Formic acid                                                | Air         | mg   | 3.6181525            | 1.097101                    | 1.11465                     |
| 302 | Furan                                                      | Air         | μg   | 965.45732            | 285.7913                    | 290.5214                    |
| 303 | Heat, waste                                                | Air         | MWh  | 4.8269579            | 0.672733                    | 0.796245                    |
| 304 | Helium                                                     | Air         | mg   | 182.58604            | 19.19234                    | 22.16593                    |
| 305 | Heptane                                                    | Air         | mg   | 729.41094            | 84.95117                    | 96.80666                    |
| 306 | Hexane                                                     | Air         | g    | 2.7865226            | 0.349473                    | 0.390609                    |
| 307 | Hydrocarbons, aliphatic,<br>alkanes, cyclic                | Air         | mg   | 85.862549            | 51.69195                    | 51.62179                    |
| 308 | Hydrocarbons, aliphatic, alkanes, unspecified              | Air         | g    | 133.82345            | -1.08189                    | 0.756765                    |
| 309 | Hydrocarbons, aliphatic,<br>unsaturated                    | Air         | g    | 1.6902091            | 0.208711                    | 0.256576                    |
| 310 | Hydrocarbons, aromatic                                     | Air         | g    | 12.792401            | 1.905661                    | 2.43628                     |
| 311 | Hydrocarbons, chlorinated                                  | Air         | g    | 33.316103            | 32.45435                    | 33.17984                    |
| 312 | Hydrogen                                                   | Air         | g    | 25.163778            | 21.30016                    | 21.73314                    |
| 313 | Hydrogen-3, Tritium                                        | Air         | kBq  | 64.17743             | 8.802083                    | 9.69226                     |



| No  | Substance                                       | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 314 | Hydrogen chloride                               | Air         | kg   | 1.5554598            | 0.781981                    | 0.783885                    |
| 315 | Hydrogen fluoride                               | Air         | g    | 11.094427            | 0.821586                    | 1.061301                    |
| 316 | Hydrogen peroxide                               | Air         | μg   | 247.02482            | 108.6318                    | 109.6665                    |
| 317 | Hydrogen sulfide                                | Air         | g    | 7.9323323            | 0.341109                    | 0.756738                    |
| 318 | Iodine                                          | Air         | mg   | 241.98565            | 29.30313                    | 33.28563                    |
| 319 | lodine-129                                      | Air         | Bq   | 8.9326145            | 1.415173                    | 1.593491                    |
| 320 | lodine-131                                      | Air         | Bq   | 448.91483            | 71.19861                    | 80.25105                    |
| 321 | lodine-133                                      | Air         | Bq   | 5.4113712            | 0.296457                    | 0.243212                    |
| 322 | lodine-135                                      | Air         | Bq   | 11.715008            | 0.640178                    | 0.524285                    |
| 323 | Iron                                            | Air         | g    | 9.5269166            | 0.668395                    | 0.898032                    |
| 324 | Isocyanic acid                                  | Air         | g    | 4.9227686            | 4.917987                    | 4.918125                    |
| 325 | Isoprene                                        | Air         | μg   | 44.799999            | 13.2618                     | 13.48131                    |
| 326 | Isopropylamine                                  | Air         | μg   | 93.710999            | 0.001605                    | 0.002193                    |
| 327 | Krypton-85                                      | Air         | kBq  | 3.5427096            | 0.562415                    | 0.634142                    |
| 328 | Krypton-85m                                     | Air         | Bq   | 177.93919            | 24.64349                    | 28.06095                    |
| 329 | Krypton-87                                      | Air         | Bq   | 69.999754            | 10.31805                    | 11.69448                    |
| 330 | Krypton-88                                      | Air         | Bq   | 69.297745            | 9.945578                    | 11.29438                    |
| 331 | Krypton-89                                      | Air         | Bq   | 17.966311            | 2.400204                    | 2.74074                     |
| 332 | Lactic acid                                     | Air         | μg   | 26.714047            | 0.123782                    | 0.126766                    |
| 333 | Lanthanum-140                                   | Air         | μBq  | 719.4279             | 92.73423                    | 106.1969                    |
| 334 | Lead                                            | Air         | g    | 1.6851636            | -0.05725                    | 0.051761                    |
| 335 | Lead-210                                        | Air         | Bq   | 100.75383            | 7.600119                    | 9.650175                    |
| 336 | m-Xylene                                        | Air         | mg   | 32.898711            | 5.676534                    | 6.318843                    |
| 337 | Magnesium                                       | Air         | g    | 2.7755466            | 0.009533                    | 0.151585                    |
| 338 | Manganese                                       | Air         | mg   | 547.95374            | 26.78405                    | 35.05394                    |
| 339 | Manganese-54                                    | Air         | μBq  | 66.965616            | 8.631866                    | 9.884994                    |
| 340 | Mercury                                         | Air         | mg   | 238.66191            | -9.29306                    | 7.695269                    |
| 341 | Methane, biogenic                               | Air         | g    | 59.136524            | 89.10635                    | 4.587928                    |
| 342 | Methane, bromo-, Halon<br>1001                  | Air         | ng   | 4.9185012            | 0.26798                     | 0.219147                    |
| 343 | Methane,<br>bromochlorodifluoro-,<br>Halon 1211 | Air         | mg   | 6.5527133            | 1.398351                    | 1.518189                    |
| 344 | Methane, bromotrifluoro-,<br>Halon 1301         | Air         | mg   | 2.0237037            | 0.230273                    | 0.262892                    |



| No  | Substance                             | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|---------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 345 | Methane, chlorodifluoro-,<br>HCFC-22  | Air         | mg   | 25.156605            | 5.228458                    | 5.687274                    |
| 346 | Methane, dichloro-, HCC-<br>30        | Air         | mg   | 7.4926652            | 1.908989                    | 1.888311                    |
| 347 | Methane,<br>dichlorodifluoro-, CFC-12 | Air         | mg   | 3.9855               | 0.013043                    | 0.013624                    |
| 348 | Methane, dichlorofluoro-,<br>HCFC-21  | Air         | ng   | 33.309959            | 13.07541                    | 13.26984                    |
| 349 | Methane, fossil                       | Air         | kg   | 2.7585624            | 0.389715                    | 0.481119                    |
| 350 | Methane, monochloro-, R-<br>40        | Air         | mg   | 10.935501            | 0.595772                    | 0.492691                    |
| 351 | Methane, tetrachloro-,<br>CFC-10      | Air         | mg   | 13.201339            | 6.564043                    | 6.607211                    |
| 352 | Methane, tetrafluoro-,<br>CFC-14      | Air         | mg   | 63.684605            | 7.666048                    | 9.237245                    |
| 353 | Methane, trichlorofluoro-,<br>CFC-11  | Air         | ng   | 54.076939            | 21.22722                    | 21.54287                    |
| 354 | Methane, trifluoro-, HFC-<br>23       | Air         | μg   | 10.598622            | 4.160356                    | 4.222221                    |
| 355 | Methanesulfonic acid                  | Air         | μg   | 30.761118            | 0.009652                    | 0.011774                    |
| 356 | Methanol                              | Air         | g    | 4.2768774            | 1.471837                    | 1.538666                    |
| 357 | Methyl acetate                        | Air         | μg   | 12.406735            | 0.000374                    | 0.000459                    |
| 358 | Methyl acrylate                       | Air         | μg   | 103.77706            | 45.74893                    | 46.19701                    |
| 359 | Methyl borate                         | Air         | μg   | 11.241226            | 0.049162                    | 0.050369                    |
| 360 | Methyl ethyl ketone                   | Air         | mg   | 164.85875            | 72.42184                    | 73.14544                    |
| 361 | Methyl formate                        | Air         | μg   | 12.28092             | 0.241487                    | 0.244779                    |
| 362 | Methyl lactate                        | Air         | μg   | 29.326295            | 0.135892                    | 0.139168                    |
| 363 | Methylamine                           | Air         | μg   | 88.86563             | 0.105384                    | 0.107234                    |
| 364 | Molybdenum                            | Air         | mg   | 27.68401             | 6.087472                    | 3.251318                    |
| 365 | Monoethanolamine                      | Air         | mg   | 178.37776            | 83.44825                    | 2.046184                    |
| 366 | Nickel                                | Air         | mg   | 989.45353            | 109.2958                    | 133.3653                    |
| 367 | Niobium-95                            | Air         | μBq  | 7.9494016            | 1.024678                    | 1.173435                    |
| 368 | Nitrate                               | Air         | mg   | 60.04059             | 7.962828                    | 8.954978                    |
| 369 | Nitrobenzene                          | Air         | μg   | 241.36016            | 0.746976                    | 0.765477                    |
| 370 | Nitrogen oxides                       | Air         | kg   | 2.2103285            | 0.214193                    | 0.279342                    |



| No  | Substance                                                                  | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|----------------------------------------------------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 371 | NMVOC, non-methane<br>volatile organic<br>compounds, unspecified<br>origin | Air         | g    | 444.29847            | 67.25512                    | 81.06339                    |
| 372 | Noble gases, radioactive,<br>unspecified                                   | Air         | kBq  | 85880.802            | 13601.58                    | 15314.74                    |
| 373 | Ozone                                                                      | Air         | g    | 4.0143515            | 0.544413                    | 0.583844                    |
| 374 | PAH, polycyclic aromatic hydrocarbons                                      | Air         | mg   | 222.59362            | 4.619091                    | 15.66296                    |
| 375 | Particulates, < 2.5 um                                                     | Air         | g    | 524.57948            | 3.638642                    | 34.19637                    |
| 376 | Particulates, > 10 um                                                      | Air         | kg   | 1.4082238            | -0.02069                    | 0.06221                     |
| 377 | Particulates, > 2.5 um, and < 10um                                         | Air         | g    | 792.05301            | -27.109                     | 28.89876                    |
| 378 | Pentane                                                                    | Air         | g    | 12.019438            | 1.633589                    | 1.799968                    |
| 379 | Phenol                                                                     | Air         | g    | 6.248991             | 3.080565                    | 3.081311                    |
| 380 | Phenol, 2,4-dichloro-                                                      | Air         | μg   | 62.128941            | 0.016073                    | 0.016677                    |
| 381 | Phenol, pentachloro-                                                       | Air         | mg   | 2.4905765            | 0.389504                    | 0.437674                    |
| 382 | Phosphine                                                                  | Air         | ng   | 79.062314            | 34.85372                    | 35.19508                    |
| 383 | Phosphorus                                                                 | Air         | mg   | 161.12297            | 15.74859                    | 19.76082                    |
| 384 | Platinum                                                                   | Air         | ng   | 147.15768            | 21.25571                    | 23.63588                    |
| 385 | Plutonium-238                                                              | Air         | μBq  | 1.2185533            | 0.193053                    | 0.217378                    |
| 386 | Plutonium-alpha                                                            | Air         | μBq  | 2.7933784            | 0.442548                    | 0.498311                    |
| 387 | Polonium-210                                                               | Air         | Bq   | 170.3157             | 12.83203                    | 16.62399                    |
| 388 | Polychlorinated biphenyls                                                  | Air         | mg   | 3.0970721            | -0.24373                    | -0.00268                    |
| 389 | Potassium                                                                  | Air         | g    | 8.039107             | 1.195936                    | 1.378547                    |
| 390 | Potassium-40                                                               | Air         | Bq   | 37.869582            | 2.40407                     | 2.808682                    |
| 391 | Propanal                                                                   | Air         | μg   | 488.16797            | 43.72543                    | 45.06098                    |
| 392 | Propane                                                                    | Air         | g    | 12.147586            | 1.957567                    | 2.216838                    |
| 393 | Propene                                                                    | Air         | g    | 4.2790539            | 1.875994                    | 1.910134                    |
| 394 | Propionic acid                                                             | Air         | mg   | 82.824273            | 17.50842                    | 18.73149                    |
| 395 | Propylamine                                                                | Air         | μg   | 14.210231            | 0.076736                    | 0.078602                    |
| 396 | Propylene oxide                                                            | Air         | mg   | 618.63793            | 427.2189                    | 427.1283                    |
| 397 | Protactinium-234                                                           | Air         | Bq   | 3.9290281            | 0.339398                    | 0.3367                      |
| 398 | Radioactive species, other beta emitters                                   | Air         | Bq   | 41.75757             | 6.871985                    | 6.519746                    |



| No  | Substance             | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 399 | Radium-226            | Air         | Bq   | 74.329113            | 8.578051                    | 9.799705                    |
| 400 | Radium-228            | Air         | Bq   | 32.340416            | -0.19943                    | 1.604968                    |
| 401 | Radon-220             | Air         | Bq   | 954.37119            | 96.34561                    | 102.4996                    |
| 402 | Radon-222             | Air         | kBq  | 194197.75            | 27156.15                    | 30033.88                    |
| 403 | Ruthenium-103         | Air         | μBq  | 1.7465356            | 0.225128                    | 0.257811                    |
| 404 | Scandium              | Air         | mg   | 18.530276            | 2.446114                    | 2.764856                    |
| 405 | Selenium              | Air         | mg   | 72.479371            | 7.464399                    | 8.289315                    |
| 406 | Silicon               | Air         | g    | 11.352511            | 0.005823                    | 0.585694                    |
| 407 | Silicon tetrafluoride | Air         | μg   | 39.262524            | 3.087365                    | 4.865282                    |
| 408 | Silver                | Air         | μg   | 791.1077             | 112.1775                    | 124.0451                    |
| 409 | Silver-110            | Air         | μBq  | 17.309505            | 2.231194                    | 2.555107                    |
| 410 | Sodium                | Air         | g    | 1.4890027            | 0.146084                    | 0.185125                    |
| 411 | Sodium chlorate       | Air         | mg   | 62.649696            | 0.067363                    | 0.072754                    |
| 412 | Sodium dichromate     | Air         | mg   | 3.4228221            | 0.203001                    | 0.209256                    |
| 413 | Sodium formate        | Air         | mg   | 3.3503222            | 2.91663                     | 2.919813                    |
| 414 | Sodium hydroxide      | Air         | μg   | 920.4523             | 405.077                     | 408.8937                    |
| 415 | Strontium             | Air         | mg   | 167.15124            | 5.536104                    | 12.86142                    |
| 416 | Styrene               | Air         | mg   | 8.8149897            | 0.41574                     | 0.477268                    |
| 417 | Sulfate               | Air         | g    | 41.149098            | 6.494225                    | 6.735419                    |
| 418 | Sulfur dioxide        | Air         | kg   | 3.1519846            | 0.346587                    | 0.415477                    |
| 419 | Sulfur hexafluoride   | Air         | mg   | 72.664915            | 8.786472                    | 9.293197                    |
| 420 | Sulfur trioxide       | Air         | mg   | 1.451867             | 0.006013                    | 0.006163                    |
| 421 | Sulfuric acid         | Air         | μg   | 193.20504            | 84.84532                    | 85.66307                    |
| 422 | t-Butyl methyl ether  | Air         | μg   | 869.15695            | 70.1874                     | 96.38723                    |
| 423 | t-Butylamine          | Air         | μg   | 95.67204             | 0.007808                    | 0.009792                    |
| 424 | Terpenes              | Air         | μg   | 423.58334            | 125.3981                    | 127.474                     |
| 425 | Thallium              | Air         | μg   | 789.08835            | -20.8769                    | 31.71305                    |
| 426 | Thorium               | Air         | μg   | 996.92234            | -49.7614                    | 22.71421                    |
| 427 | Thorium-228           | Air         | Bq   | 6.6422317            | 0.344923                    | 0.52062                     |
| 428 | Thorium-230           | Air         | Bq   | 8.5005552            | 0.898601                    | 0.957806                    |
| 429 | Thorium-232           | Air         | Bq   | 7.6298099            | 0.570809                    | 0.717181                    |
| 430 | Thorium-234           | Air         | Bq   | 3.9294672            | 0.339445                    | 0.33675                     |
| 431 | Tin                   | Air         | mg   | 126.45855            | -7.00145                    | 1.937896                    |
| 432 | Titanium              | Air         | mg   | 516.75562            | 38.42321                    | 56.89461                    |



| No  | Substance            | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|----------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 433 | Toluene              | Air         | g    | 2.8142183            | 0.317156                    | 0.34829                     |
| 434 | Toluene, 2-chloro-   | Air         | μg   | 126.38039            | 0.223275                    | 0.229185                    |
| 435 | Trimethylamine       | Air         | μg   | 25.377172            | 0.000668                    | 0.000819                    |
| 436 | Tungsten             | Air         | mg   | 2.0094519            | 0.281002                    | 0.310778                    |
| 437 | Uranium              | Air         | mg   | 1.1035322            | -0.04847                    | 0.03043                     |
| 438 | Uranium-234          | Air         | Bq   | 22.499318            | 2.656112                    | 2.864724                    |
| 439 | Uranium-235          | Air         | mBq  | 829.12044            | 115.9442                    | 128.2303                    |
| 440 | Uranium-238          | Air         | Bq   | 39.262739            | 3.836792                    | 4.479001                    |
| 441 | Uranium alpha        | Air         | Bq   | 79.751767            | 11.16314                    | 12.34792                    |
| 442 | Vanadium             | Air         | mg   | 978.64813            | 177.3262                    | 198.172                     |
| 443 | Water                | Air         | kg   | 215.81415            | -0.0011                     | 0.003853                    |
| 444 | Xenon-131m           | Air         | Bq   | 322.71902            | 47.05081                    | 53.3699                     |
| 445 | Xenon-133            | Air         | kBq  | 10.310621            | 1.48307                     | 1.683924                    |
| 446 | Xenon-133m           | Air         | Bq   | 43.094278            | 6.703677                    | 7.569108                    |
| 447 | Xenon-135            | Air         | kBq  | 4.224075             | 0.609121                    | 0.691486                    |
| 448 | Xenon-135m           | Air         | kBq  | 2.4962722            | 0.357467                    | 0.406013                    |
| 449 | Xenon-137            | Air         | Bq   | 49.250564            | 6.581419                    | 7.515014                    |
| 450 | Xenon-138            | Air         | Bq   | 431.10883            | 59.236                      | 67.49165                    |
| 451 | Xylene               | Air         | g    | 3.2779178            | 0.392014                    | 0.439755                    |
| 452 | Zinc                 | Air         | g    | 5.0791171            | -0.16533                    | 0.149493                    |
| 453 | Zinc-65              | Air         | μBq  | 334.37559            | 43.101                      | 49.35817                    |
| 454 | Zirconium            | Air         | mg   | 3.3962148            | -0.26635                    | -0.00276                    |
| 455 | Zirconium-95         | Air         | μBq  | 326.83944            | 42.12958                    | 48.24573                    |
| 456 | 1-Butanol            | Water       | μg   | 697.17004            | 262.8187                    | 265.4454                    |
| 457 | 1-Pentanol           | Water       | μg   | 58.954967            | 0.317979                    | 0.325707                    |
| 458 | 1-Pentene            | Water       | μg   | 44.551288            | 0.24029                     | 0.24613                     |
| 459 | 1-Propanol           | Water       | μg   | 114.91322            | 0.436352                    | 0.449203                    |
| 460 | 1,4-Butanediol       | Water       | μg   | 46.463182            | 0.346086                    | 0.349971                    |
| 461 | 2-Aminopropanol      | Water       | μg   | 58.481337            | 0.004379                    | 0.004943                    |
| 462 | 2-Butene, 2-methyl-  | Water       | ng   | 9.8820256            | 0.0533                      | 0.054596                    |
| 463 | 2-Methyl-1-propanol  | Water       | μg   | 312.99437            | 0.55746                     | 0.571392                    |
| 464 | 2-Propanol           | Water       | μg   | 518.85131            | 0.008884                    | 0.01214                     |
| 465 | 4-Methyl-2-pentanone | Water       | μg   | 127.60805            | 6.952603                    | 5.685656                    |
| 466 | Acenaphthene         | Water       | μg   | 20.810741            | 2.480698                    | 2.817488                    |



| No  | Substance                                | Compartment                   | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|------------------------------------------|-------------------------------|------|----------------------|-----------------------------|-----------------------------|
| 467 | Acenaphthylene                           | Water                         | μg   | 1.3015074            | 0.155143                    | 0.176206                    |
| 468 | Acetaldehyde                             | Water                         | mg   | 291.69731            | 193.6843                    | 193.69                      |
| 469 | Acetic acid                              | Water                         | g    | 4.0465366            | 2.736624                    | 2.737237                    |
| 470 | Acetone                                  | Water                         | μg   | 475.02269            | 17.70052                    | 14.86234                    |
| 471 | Acetonitrile                             | Water                         | μg   | 25.48983             | 0.007998                    | 0.009757                    |
| 472 | Acetyl chloride                          | Water                         | μg   | 46.313142            | 0.249794                    | 0.255866                    |
| 473 | Acidity, unspecified                     | Water                         | mg   | 263.39289            | 231.8128                    | 236.6861                    |
| 474 | Acrylate                                 | Water                         | μg   | 216.47831            | 95.43199                    | 96.36666                    |
| 475 | Actinides, radioactive,<br>unspecified   | Water                         | Bq   | 14.509045            | 2.298634                    | 2.588272                    |
| 476 | Aluminium                                | Water                         | kg   | 1.3930323            | 0.109642                    | 0.142393                    |
| 477 | Ammonium, ion                            | Water                         | g    | 34.672832            | 3.397907                    | 1.784563                    |
| 478 | Aniline                                  | Water                         | μg   | 370.6473             | 1.340656                    | 1.373476                    |
| 479 | Antimony                                 | Water                         | g    | 2.1029666            | 0.872881                    | 0.917993                    |
| 480 | Antimony-122                             | Water                         | mBq  | 4.9992951            | 0.644409                    | 0.737961                    |
| 481 | Antimony-124                             | Water                         | Bq   | 2.3812746            | 0.372166                    | 0.419442                    |
| 482 | Antimony-125                             | Water                         | Bq   | 2.1751282            | 0.340154                    | 0.383273                    |
| 483 | AOX, Adsorbable Organic<br>Halogen as Cl | Water                         | mg   | 20.44901             | 4.09182                     | 4.402181                    |
| 484 | Arsenic                                  | Water                         | g    | 4.1690726            | 0.234398                    | 0.393419                    |
| 485 | Barite                                   | Water                         | g    | 29.83031             | 5.402058                    | 5.922719                    |
| 486 | Barium                                   | Water                         | g    | 34.483695            | 2.789411                    | 3.249215                    |
| 487 | Barium-140                               | Water                         | mBq  | 21.899564            | 2.822852                    | 3.232659                    |
| 488 | Benzene                                  | Water                         | g    | 14.245575            | 6.833484                    | 6.843416                    |
| 489 | Benzene, 1,2-dichloro-                   | Water                         | mg   | 1.5553288            | 0.114084                    | 0.115307                    |
| 490 | Benzene, chloro-                         | Water                         | mg   | 25.952232            | 2.343975                    | 2.368677                    |
| 491 | Benzene, ethyl-                          | Water                         | mg   | 83.175184            | 9.729043                    | 11.0002                     |
| 492 | Beryllium                                | Water                         | mg   | 831.43377            | 68.38738                    | 92.96003                    |
| 493 | BOD5, Biological Oxygen<br>Demand        | BOD5, Biological Oxygen Water |      | 1.6423341            | 0.289549                    | 0.307721                    |
| 494 | Borate                                   | Water                         | mg   | 7.4872401            | 0.02424                     | 0.024848                    |
| 495 | Boron                                    | Water                         | g    | 38.505792            | 2.415542                    | 3.951684                    |
| 496 | Bromate                                  | Water                         | g    |                      |                             | 0.481491                    |
| 497 | Bromide                                  | Water                         | g    | 1.0355273            | 0.001302                    | 0.001335                    |



| No  | Substance                         | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 498 | Bromine                           | Water       | g    | 11.648755            | 1.414106                    | 1.444287                    |
| 499 | Butene                            | Water       | mg   | 70.956183            | 0.087301                    | 0.089967                    |
| 500 | Butyl acetate                     | Water       | μg   | 784.35137            | 341.6454                    | 345.0591                    |
| 501 | Butyrolactone                     | Water       | μg   | 1.3273588            | 0.580451                    | 0.5864                      |
| 502 | Cadmium                           | Water g     |      | 1.1461328            | 0.053739                    | 0.102723                    |
| 503 | Calcium                           | Water       | kg   | 13.023674            | 1.881971                    | 2.257504                    |
| 504 | Carbon disulfide                  | Water       | mg   | 1.1496143            | 0.015157                    | 0.015518                    |
| 505 | Carbonate                         | Water       | g    | 21.142854            | 14.40343                    | 14.56724                    |
| 506 | Carboxylic acids, unspecified     | Water       | g    | 14.599419            | 1.790469                    | 2.026463                    |
| 507 | Cerium-141                        | Water       | mBq  | 8.7558044            | 1.128623                    | 1.29247                     |
| 508 | Cerium-144                        | Water       | mBq  | 2.6655532            | 0.34359                     | 0.39347                     |
| 509 | Cesium                            | Water       | mg   | 3.3457778            | 0.398826                    | 0.452972                    |
| 510 | Cesium-134                        | Water       | Bq   | 1.9902367            | 0.316425                    | 0.356087                    |
| 511 | Cesium-136                        | Water       | mBq  | 1.5539843            | 0.200309                    | 0.229388                    |
| 512 | Cesium-137                        | Water       | kBq  | 1.6693586            | 0.264402                    | 0.297723                    |
| 513 | Chloramine                        | Water       | mg   | 1.2926954            | 0.004169                    | 0.004274                    |
| 514 | Chlorate                          | Water       | g    | 10.472205            | 5.706412                    | 5.786161                    |
| 515 | Chloride                          | Water       | kg   | 12.008379            | 3.5103                      | 3.886471                    |
| 516 | Chlorinated solvents, unspecified | Water       | g    | 38.625069            | 37.7505                     | 38.59361                    |
| 517 | Chlorine                          | Water       | mg   | 305.07879            | 28.62005                    | 29.45292                    |
| 518 | Chloroacetic acid                 | Water       | mg   | 23.772574            | 0.18225                     | 0.21973                     |
| 519 | Chloroacetyl chloride             | Water       | μg   | 77.993952            | 0.005841                    | 0.006593                    |
| 520 | Chloroform                        | Water       | μg   | 78.756693            | 5.465666                    | 5.521515                    |
| 521 | Chlorosulfonic acid               | Water       | μg   | 92.690913            | 0.029085                    | 0.03548                     |
| 522 | Chromium                          | Water       | mg   | 248.63313            | 15.81756                    | 25.45066                    |
| 523 | Chromium-51                       | Water       | Bq   | 2.6642308            | 0.376749                    | 0.427926                    |
| 524 | Chromium VI                       | Water       | g    | 37.336558            | -1.58089                    | 1.038021                    |
| 525 | Cobalt                            | Water       | g    | 28.381666            | -0.23302                    | 1.43157                     |
| 526 | Cobalt-57                         | Water       | mBq  | 49.329323            | 6.358547                    | 7.281647                    |
| 527 | Cobalt-58                         | Water       | Bq   | 19.41825             | 2.894818                    | 3.274081                    |
| 528 | Cobalt-60                         | Water       | Bq   | 15.270079            | 2.253504                    | 2.550862                    |



| Νο  | Substance                                     | Compartment                | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------------------------------|----------------------------|------|----------------------|-----------------------------|-----------------------------|
| 529 | COD, Chemical Oxygen<br>Demand                | Water                      | kg   | 3.0671348            | 0.510568                    | 0.512525                    |
| 530 | Copper                                        | Water                      | g    | 47.127604            | 1.074235                    | 1.740184                    |
| 531 | Cumene                                        | Water                      | g    | 20.201009            | 9.949499                    | 9.956652                    |
| 532 | Cyanide                                       | Water                      | mg   | 533.59172            | -13.8625                    | 21.07749                    |
| 533 | Dichromate                                    | Water                      | mg   | 12.663155            | 0.73776                     | 0.760847                    |
| 534 | Diethylamine                                  | lamine Water μg 180.19669  |      | 0.597329             | 0.612136                    |                             |
| 535 | Dimethylamine                                 | Water                      | μg   | 803.90871            | 0.316777                    | 0.339236                    |
| 536 | Dipropylamine                                 | Water                      | μg   | 81.845815            | 0.379246                    | 0.388388                    |
| 537 | DOC, Dissolved Organic<br>Carbon              | Water                      | kg   | 1.1221634            | 0.242106                    | 0.194126                    |
| 538 | Ethane, 1,2-dichloro-                         | Water                      | mg   | 6.8632178            | 3.372637                    | 3.460403                    |
| 539 | Ethanol                                       | Water                      | mg   | 14.891851            | 1.442821                    | 1.449374                    |
| 540 | Ethene                                        | Water                      | mg   | 112.76001            | 14.11959                    | 16.73694                    |
| 541 | Ethene, chloro-                               | Water                      | mg   | 320.55621            | 313.2387                    | 320.2365                    |
| 542 | Ethyl acetate                                 | Water                      | μg   | 330.1003             | 135.076                     | 135.0921                    |
| 543 | Ethylamine                                    | Water                      | μg   | 563.723              | 0.287952                    | 0.298261                    |
| 544 | Ethylene diamine                              | Water                      | μg   | 454.76314            | 6.035574                    | 6.212697                    |
| 545 | Ethylene oxide                                | Water                      | μg   | 609.25116            | 165.3948                    | 46.25224                    |
| 546 | Fluoride                                      | Water                      | g    | 120.89582            | 15.24807                    | 18.78021                    |
| 547 | Fluosilicic acid                              | Water                      | mg   | 14.882438            | 1.791374                    | 2.15857                     |
| 548 | Formaldehyde                                  | Water                      | g    | 1.3745267            | 0.530268                    | 0.54064                     |
| 549 | Formamide                                     | Water                      | μg   | 107.82321            | 0.581575                    | 0.59571                     |
| 550 | Formic acid                                   | Water                      | μg   | 31.299776            | 0.168821                    | 0.172924                    |
| 551 | Formic acid, thallium(1+)<br>salt             | Water                      | mg   | 29.488146            | 0.002406                    | 0.003018                    |
| 552 | Glutaraldehyde                                | Water                      | mg   | 3.682754             | 0.666921                    | 0.7312                      |
| 553 | Heat, waste                                   | Water                      | MJ   | 931.84472            | 118.9571                    | 112.7218                    |
| 554 | Hydrocarbons, aliphatic, alkanes, unspecified | Water                      | mg   | 434.95112            | 51.84737                    | 58.88639                    |
| 555 | Hydrocarbons, aliphatic, Water<br>unsaturated |                            | mg   | 40.257748            | 4.786064                    | 5.435827                    |
| 556 | Hydrocarbons, aromatic                        | Water                      | g    | 1.8120329            | 0.218696                    | 0.248073                    |
| 557 | Hydrocarbons, unspecified                     | specified Water g 14.00207 |      | 9.810772             | 9.963309                    |                             |
| 558 | Hydrogen-3, Tritium                           | Water                      | kBq  | 3892.9371            | 609.4426                    | 685.0897                    |



| No  | Substance                      | Compartment | Unit | OEM Office<br>System                  | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|--------------------------------|-------------|------|---------------------------------------|-----------------------------|-----------------------------|
| 559 | Hydrogen peroxide              | Water       | mg   | 5.0231038                             | 1.716082                    | 1.732732                    |
| 560 | Hydrogen sulfide               | Water       | mg   | 873.63253                             | 236.8908                    | 104.5937                    |
| 561 | Hydroxide                      | Water       | mg   | 7.2152361                             | 3.036091                    | 3.070359                    |
| 562 | Hypochlorite                   | Water       | mg   | 250.65107                             | 34.8252                     | 38.53346                    |
| 563 | Iodide                         | Water       | mg   | 423.2373                              | 43.46785                    | 49.52204                    |
| 564 | lodine-131                     | Water       | mBq  | 434.26145                             | 67.22297                    | 75.82428                    |
| 565 | lodine-133                     | Water       | mBq  | 13.74806                              | 1.772124                    | 2.029392                    |
| 566 | Iron                           | Water       | kg   | 1.9640884                             | 0.126706                    | 0.184755                    |
| 567 | Iron-59                        | Water       | mBq  | 3.7796358                             | 0.487195                    | 0.557923                    |
| 568 | Isopropylamine                 | Water       | μg   | 224.90915                             | 0.003851                    | 0.005262                    |
| 569 | Lactic acid                    | Water       | μg   | 64.113475                             | 0.297079                    | 0.30424                     |
| 570 | Lanthanum-140                  | Water       | mBq  | 23.324845                             | 3.006571                    | 3.443049                    |
| 571 | Lead                           | Water       | g    | 8.8232608                             | 0.280464                    | 0.321997                    |
| 572 | Lead-210                       | Water       | Bq   | 326.16879                             | 5.920881                    | 6.755859                    |
| 573 | Lithium                        | Water       | g    | 32.719609                             | 1.782596                    | 1.457762                    |
| 574 | m-Xylene                       | Water       | mg   | 1.0145977                             | 0.050863                    | 0.041724                    |
| 575 | Magnesium                      | Water       | kg   | 5.5089618                             | 0.471576                    | 0.637599                    |
| 576 | Manganese                      | Water       | g    | 449.78992                             | 37.46103                    | 51.54508                    |
| 577 | Manganese-54                   | Water       | Bq   | 1.1938774                             | 0.178314                    | 0.201639                    |
| 578 | Mercury                        | Water       | mg   | 192.15097                             | 14.82988                    | 21.75796                    |
| 579 | Methane, dichloro-, HCC-<br>30 | Water       | mg   | 53.3104                               | 7.841496                    | 8.736634                    |
| 580 | Methanol                       | Water       | mg   | 254.88668                             | 50.79145                    | 55.51955                    |
| 581 | Methyl acetate                 | Water       | μg   | 29.776141                             | 0.000897                    | 0.001101                    |
| 582 | Methyl acrylate                | Water       | mg   | 2.0273154                             | 0.893719                    | 0.902472                    |
| 583 | Methyl formate                 | Water       | μg   | 4.9030641                             | 0.096412                    | 0.097726                    |
| 584 | Methylamine                    | Water       | μg   | 213.27075                             | 0.252917                    | 0.257357                    |
| 585 | Molybdenum                     | Water       | g    | 3.249367                              | 0.280234                    | 0.377416                    |
| 586 | Molybdenum-99                  | Water       | mBq  | 8.0419064                             | 1.036601                    | 1.18709                     |
| 587 | Nickel                         | Water       | g    | 119.62673                             | -1.18457                    | 5.728264                    |
| 588 | Niobium-95                     | Water       | mBq  | 183.06464                             | 28.59535                    | 32.21179                    |
| 589 | Nitrate                        | Water       | g    | · · · · · · · · · · · · · · · · · · · |                             | 62.33891                    |
| 590 | Nitrite                        | Water       | g    | 1.6546005                             | 0.079731                    | 0.037256                    |
| 591 | Nitrobenzene                   | Water       | μg   | 967.24858                             | 2.993497                    | 3.067642                    |



| No  | Substance                                     | Compartment | Unit         | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------------------------------|-------------|--------------|----------------------|-----------------------------|-----------------------------|
| 592 | Nitrogen                                      | Water       | g            | 6.6163305            | 1.165659                    | 1.185079                    |
| 593 | Nitrogen, organic bound                       | Water       | g            | 4.1309225            | 0.647539                    | 0.499649                    |
| 594 | o-Xylene                                      | Water       | μg           | 671.6213             | 36.59265                    | 29.92451                    |
| 595 | Oils, unspecified                             | Water       | g            | 224.39606            | 26.11729                    | 30.30177                    |
| 596 | PAH, polycyclic aromatic<br>hydrocarbons      | Water       | mg           | 169.77646            | -10.1568                    | 2.077199                    |
| 597 | Phenol                                        | Water       | g            | 5.9877105            | 2.833828                    | 2.840212                    |
| 598 | Phosphate                                     | Water       | kg           | 1.8489999            | 0.149332                    | 0.209702                    |
| 599 | Phosphorus                                    | Water       | g            | 2.0813277            | 0.046816                    | 0.061784                    |
| 600 | Polonium-210                                  | Water       | Bq           | 464.55551            | 6.082637                    | 7.35811                     |
| 601 | Potassium                                     | Water       | kg           | 3.4134832            | 0.31094                     | 0.414781                    |
| 602 | Potassium-40                                  | Water       | Bq           | 80.98055             | 5.446545                    | 5.843173                    |
| 603 | Propanal                                      | Water       | μg           | 85.292088            | 0.460333                    | 0.471522                    |
| 604 | Propene                                       | Water       | g            | 8.8648813            | 4.458278                    | 4.460773                    |
| 605 | Propionic acid                                | Water       | μg           | 279.55341            | 0.048319                    | 0.051071                    |
| 606 | Propylamine                                   | Water       | μg           | 34.104877            | 0.184165                    | 0.188642                    |
| 607 | Propylene oxide                               | Water       | g            | 1.4885942            | 1.027994                    | 1.027776                    |
| 608 | Protactinium-234                              | Water       | Bq           | 27.095437            | 3.789024                    | 4.19053                     |
| 609 | Radioactive species, alpha emitters           | Water       | mBq          | 242.34904            | 3.671617                    | 5.694093                    |
| 610 | Radioactive species,<br>Nuclides, unspecified | Water       | kBq          | 8.9031298            | 1.389457                    | 1.561135                    |
| 611 | Radium-224                                    | Water       | Bq           | 167.2889             | 19.9413                     | 22.64861                    |
| 612 | Radium-226                                    | Water       | kBq          | 17.49958             | 2.394854                    | 2.649433                    |
| 613 | Radium-228                                    | Water       | Bq           | 391.2818             | 42.97205                    | 47.8237                     |
| 614 | Rubidium                                      | Water       | mg           | 33.457778            | 3.988259                    | 4.529722                    |
| 615 | Ruthenium-103                                 | Water       | mBq          | 1.6969147            | 0.218732                    | 0.250487                    |
| 616 | Scandium                                      | Water       | g            | 1.4128768            | 0.119332                    | 0.158371                    |
| 617 | Selenium                                      | Water       | g            | 2.0391211            | 0.172854                    | 0.237359                    |
| 618 | Silicon                                       | Water       | kg 23.941348 |                      | -0.13907                    | 1.268197                    |
| 619 | Silver                                        | Water       | mg 134.11125 |                      | 7.678488                    | 9.244142                    |
| 620 | Silver-110                                    | Water       | Bq           |                      |                             | 2.370264                    |
| 621 | Sodium                                        | Water       | kg           | z 7.6918086 1.2339   |                             | 1.402278                    |
| 622 | Sodium-24                                     | Water       | mBq          | 60.847208            | 7.843202                    | 8.981837                    |



| No  | Substance                        | Compartment | Unit     | OEM Office<br>System                  | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|----------------------------------|-------------|----------|---------------------------------------|-----------------------------|-----------------------------|
| 623 | Sodium formate                   | Water       | mg       | 8.0489447                             | 7.007026                    | 7.014672                    |
| 624 | Solids, inorganic                | Water       | g        | 526.24484                             | 71.61587                    | 84.35097                    |
| 625 | Strontium                        | Water       | g        | 178.26622                             | 16.68134                    | 21.66505                    |
| 626 | Strontium-89                     | Water       | mBq      | 258.22828                             | 37.25579                    | 42.2398                     |
| 627 | Strontium-90                     | Water       | kBq      | 12.371958                             | 1.966211                    | 2.216758                    |
| 628 | Sulfate                          | Water       | kg       | 43.914118                             | 4.165517                    | 5.428152                    |
| 629 | Sulfide                          | Water       | mg       | 221.9036                              | 4.083579                    | 4.469755                    |
| 630 | Sulfite                          | Water       | mg       | 705.70925                             | 95.96452                    | 105.7814                    |
| 631 | Sulfur                           | Water       | g        | 2.8180102                             | 0.085056                    | 0.094165                    |
| 632 | Suspended solids,<br>unspecified | Water       | kg       | 2.9817818                             | 0.485089                    | 0.55963                     |
| 633 | t-Butyl methyl ether             | Water       | mg       | 6.8677699                             | 0.84975                     | 0.959653                    |
| 634 | t-Butylamine                     | Water       | μg       | 229.61506                             | 0.018738                    | 0.0235                      |
| 635 | Technetium-99m                   | Water       | mBq      | 186.16526                             | 24.03878                    | 27.52466                    |
| 636 | Tellurium-123m                   | Water       | mBq      | 257.34203                             | 40.77875                    | 45.90413                    |
| 637 | Tellurium-132                    | Water       | μBq      | 465.64227                             | 60.02126                    | 68.73483                    |
| 638 | Thallium                         | Water       | mg       | 114.48325                             | 6.812138                    | 11.22204                    |
| 639 | Thorium-228                      | Water       | Bq       | 672.58603                             | 79.78014                    | 90.61763                    |
| 640 | Thorium-230                      | Water       | kBq      | 3.6969083                             | 0.516976                    | 0.571757                    |
| 641 | Thorium-232                      | Water       | Bq       | 8.792876                              | 0.987972                    | 1.046797                    |
| 642 | Thorium-234                      | Water       | Bq       | 27.100133                             | 3.789535                    | 4.191069                    |
| 643 | Tin                              | Water       | g        | 2.2232633                             | 0.170343                    | 0.318242                    |
| 644 | Titanium                         | Water       | g        | 62.121237                             | 14.75688                    | 16.19733                    |
| 645 | TOC, Total Organic Carbon        | Water       | kg       | 1.1231519                             | 0.242636                    | 0.194632                    |
| 646 | Toluene                          | Water       | mg       | 469.37575                             | 52.65074                    | 58.89241                    |
| 647 | Toluene, 2-chloro-               | Water       | μg       | 198.1811                              | 0.465925                    | 0.477896                    |
| 648 | Tributyltin compounds            | Water       | mg       | 18.716203                             | -0.05196                    | 1.03305                     |
| 649 | Triethylene glycol               | Water       | mg       | 73.24314                              | 15.6424                     | 16.98345                    |
| 650 | Trimethylamine                   | Water       | μg       | 88.639573                             | 0.001602                    | 0.001965                    |
| 651 | Tungsten                         | Water       | g 1.1477 |                                       | 0.057482                    | 0.104907                    |
| 652 | Uranium-234                      | Water       | Bq       | 32.514526                             | 4.54683                     | 5.028637                    |
| 653 | Uranium-235                      | Water       | Bq       | · · · · · · · · · · · · · · · · · · · |                             | 8.297251                    |
| 654 | Uranium-238                      | Water       | Bq       | 243.75848                             | 14.13435                    | 15.81419                    |
| 655 | Uranium alpha                    | Water       | kBq      | 1.5608911                             | 0.218287                    | 0.241421                    |



| No  | Substance                                                 | Compartment                         | Unit  | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------------------------------------------|-------------------------------------|-------|----------------------|-----------------------------|-----------------------------|
| 656 | Urea                                                      | Water                               | μg    | 130.09597            | 0.529816                    | 0.542865                    |
| 657 | Vanadium                                                  | Water                               | g     | 11.735271            | -0.02399                    | 0.659835                    |
| 658 | VOC, volatile organic<br>compounds, unspecified<br>origin | Water                               | g     | 1.2386898            | 0.14907                     | 0.169026                    |
| 659 | Xylene                                                    | Water                               | mg    | 365.79774            | 42.14943                    | 47.4349                     |
| 660 | Zinc                                                      | Water g                             |       | 103.21189            | 6.463892                    | 9.902115                    |
| 661 | Zinc-65                                                   | Water         mBq         824.95049 |       | 106.3361             | 121.7734                    |                             |
| 662 | Zirconium-95                                              | Water                               | · · · |                      | 1.231402                    | 1.41017                     |
| 663 | 2,4-D                                                     | Soil                                | mg    | 18.275233            | 0.050545                    | 0.051381                    |
| 664 | Abamectin                                                 | Soil                                | μg    | 123.44452            | 0                           | 0                           |
| 665 | Acephate                                                  | Soil                                | mg    | 117.66684            | 0                           | 0                           |
| 666 | Aclonifen                                                 | Soil                                | μg    | 152.70577            | 13.2271                     | 16.40763                    |
| 667 | Alachlor                                                  | Soil                                | mg    | 201.52224            | 0                           | 0                           |
| 668 | Aldicarb                                                  | Soil                                | mg    | 91.114086            | 0                           | 0                           |
| 669 | Aldrin                                                    | Soil                                | μg    | 2.3542558 1.03719    |                             | 1.047388                    |
| 670 | Aluminium                                                 | Soil                                | g     | 3.7390093            | 0.375647                    | 0.424841                    |
| 671 | Antimony                                                  | Soil                                | mg    | 2.6106777            | 0.132777                    | 0.132787                    |
| 672 | Arsenic                                                   | Soil                                | mg    | 3.7705434            | 0.205108                    | 0.223717                    |
| 673 | Atrazine                                                  | Soil                                | mg    | 18.40744             | 0.000272                    | 0.000275                    |
| 674 | Azoxystrobin                                              | Soil                                | μg    | 940.52683            | 0                           | 0                           |
| 675 | Barium                                                    | Soil                                | g     | 1.0985366            | 0.157396                    | 0.175075                    |
| 676 | Benomyl                                                   | Soil                                | μg    | 1.0869942            | 0.321795                    | 0.327122                    |
| 677 | Bentazone                                                 | Soil                                | μg    | 77.933969            | 6.750503                    | 8.373695                    |
| 678 | Benzene,<br>pentachloronitro-                             | Soil                                | mg    | 10.110064            | 0                           | 0                           |
| 679 | Bifenthrin                                                | Soil                                | μg    | 102.86848            | 0                           | 0                           |
| 680 | Boron                                                     | Soil                                | mg    | 111.3357             | 8.337004                    | 8.847813                    |
| 681 | Bromoxynil                                                | Soil                                | μg    | 999.29886            | 0                           | 0                           |
| 682 | Buprofezin                                                | uprofezin Soil                      |       | 470.25174            | 0                           | 0                           |
| 683 | Cadmium                                                   | dmium Soil                          |       | 3.2416326            | 0.075777                    | 0.084129                    |
| 684 | Calcium                                                   | Soil                                | g     | 20.24998             | 1.896073                    | 2.22343                     |
| 685 | Carbetamide                                               | Soil                                | μg    | 234.08466            | 5.980215                    | 6.639047                    |
| 686 | Carbofuran                                                | Soil                                | mg    | 1.5364584            | 0.17642                     | 0.179341                    |



| No  | Substance                         | Compartment | Unit           | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------------------------------|-------------|----------------|----------------------|-----------------------------|-----------------------------|
| 687 | Carbon                            | Soil        | g              | 19.228023            | 1.249442                    | 1.369184                    |
| 688 | Carboxin                          | Soil        | μg             | 44.085991            | 0                           | 0                           |
| 689 | Carfentrazone-ethyl               | Soil        | mg             | 1.2344452            | 0                           | 0                           |
| 690 | Chloride                          | Soil        | g              | 288.33786            | 7.196295                    | 6.385155                    |
| 691 | Chlorothalonil                    | Soil        | mg             | 112.09295            | 3.540077                    | 3.623221                    |
| 692 | Chlorpyrifos                      | Soil        | mg             | 11.286089            | 0                           | 0                           |
| 693 | Chromium                          | Soil        | mg             | 81.980248            | 2.305272                    | 2.615444                    |
| 694 | Chromium VI                       | Soil        | mg             | 485.04026            | 28.2747                     | 29.15954                    |
| 695 | Clethodim                         | Soil        | μg             | 191.04397            | 0                           | 0                           |
| 696 | Clomazone                         | Soil        | μg             | 323.29844            | 0                           | 0                           |
| 697 | Cobalt                            | Soil        | mg             | 1.086107             | 0.049278                    | 0.061151                    |
| 698 | Copper                            | Soil        | mg             | 317.61334            | 19.52177                    | 20.15623                    |
| 699 | Cyanazine                         | Soil        | μg             | 911.14086            | 0                           | 0                           |
| 700 | Cyclanilide                       | Soil        | mg             | 8.4054439            | 0                           | 0                           |
| 701 | Cyfluthrin                        | Soil        | mg 75.88282    |                      | 0                           | 0                           |
| 702 | Cypermethrin                      | Soil        | mg             | 5.9146645            | 0.025145                    | 0.025574                    |
| 703 | Deltamethrin                      | Soil        | μg             | 176.34513            | 0                           | 0                           |
| 704 | Dicamba                           | Soil        | μg             | 293.90661            | 0                           | 0                           |
| 705 | Dicofol                           | Soil        | mg             | 74.134062            | 0                           | 0                           |
| 706 | Dicrotophos                       | Soil        | mg             | 38.795929            | 0                           | 0                           |
| 707 | Dimethipin                        | Soil        | μg             | 587.8366             | 0                           | 0                           |
| 708 | Dimethoate                        | Soil        | μg             | 499.64357            | 0                           | 0                           |
| 709 | Disodium acid methane<br>arsenate | Soil        | mg             | 2.1749721            | 0                           | 0                           |
| 710 | Disulfoton                        | Soil        | μg             | 881.7549             | 0                           | 0                           |
| 711 | Diuron                            | Soil        | mg             | 80.653377            | 0                           | 0                           |
| 712 | Endosulfan                        | Soil        | mg             | 4.4674295            | 0                           | 0                           |
| 713 | Endothall                         | Soil        | μg             | 117.56732            | 0                           | 0                           |
| 714 | Esfenvalerate                     | Soil        | μg             | 176.34513            |                             | 0                           |
| 715 | Ethephon                          | Soil        | mg 323.29844 ( |                      |                             | 0                           |
| 716 | Etridiazole Soil                  |             | mg             | 2.1161416            | 0                           | 0                           |
| 717 |                                   |             | 4.4171567      | 0.139791             | 0.143173                    |                             |
| 718 | Fenpropathrin                     | Soil        | μg             | 470.25174            | 0                           | 0                           |
| 719 | Fluometuron                       | Soil        | mg             | 237.73139            | 0                           | 0                           |



| No  | Substance                       | Compartment | Unit         | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|---------------------------------|-------------|--------------|----------------------|-----------------------------|-----------------------------|
| 720 | Fluoride                        | Soil        | mg           | 432.84531            | 34.62283                    | 36.99084                    |
| 721 | Glyphosate                      | Soil        | mg           | 919.48248            | 1.446727                    | 1.962893                    |
| 722 | Heat, waste                     | Soil        | MJ           | 107.73617            | 8.168573                    | 3.96139                     |
| 723 | Imidacloprid                    | Soil        | mg           | 73.590363            | 0                           | 0                           |
| 724 | Indoxacarb                      | Soil        | mg           | 1.410761             | 0                           | 0                           |
| 725 | Iprodione                       | Soil        | μg           | 235.1288             | 0                           | 0                           |
| 726 | Iron                            | Soil        | g            | 38.559062            | 2.689571                    | 3.791104                    |
| 727 | Lactofen                        | Soil        | μg           | 220.4358             | 0                           | 0                           |
| 728 | Lambda-cyhalothrin              | Soil        | mg           | 1.9398257            | 0                           | 0                           |
| 729 | Lead                            | Soil        | mg           | 15.108522            | 0.944514                    | 0.955175                    |
| 730 | Linuron                         | Soil        | mg           | 3.6458783            | 0.102131                    | 0.126636                    |
| 731 | Magnesium                       | Soil        | g            | 3.0156244            | 0.321975                    | 0.371272                    |
| 732 | Malathion                       | Soil        | mg           | 274.79987            | 0                           | 0                           |
| 733 | Mancozeb                        | Soil        | mg           | 145.58565            | 4.59783                     | 4.705818                    |
| 734 | Manganese                       | Soil        | mg           | 692.62001            | 53.47174                    | 67.91331                    |
| 735 | Mepiquat chloride               | Soil        | mg 17.987496 |                      | 0                           | 0                           |
| 736 | Mercury                         | Soil        | μg           | 93.626496            | 3.349642                    | 3.482584                    |
| 737 | Metalaxil                       | Soil        | μg           | 822.98297            | 0                           | 0                           |
| 738 | Metaldehyde                     | Soil        | μg           | 96.196543            | 2.032394                    | 2.177735                    |
| 739 | Methamidophos                   | Soil        | μg           | 176.34513            | 0                           | 0                           |
| 740 | Methomyl                        | Soil        | μg           | 529.0354             | 0                           | 0                           |
| 741 | Metolachlor                     | Soil        | mg           | 47.894906            | 0.737573                    | 0.914926                    |
| 742 | Metribuzin                      | Soil        | mg           | 5.1261641            | 0.161893                    | 0.165695                    |
| 743 | Molybdenum                      | Soil        | μg           | 437.52647            | 15.0288                     | 17.52906                    |
| 744 | Monocrotophos                   | Soil        | mg           | 72.708608            | 0                           | 0                           |
| 745 | Monosodium acid methanearsonate | Soil        | mg           | 171.62849            | 0                           | 0                           |
| 746 | Naled                           | Soil        | mg           | 1.2932172            | 0                           | 0                           |
| 747 | Napropamide                     | Soil        | μg           | 170.19353            | 3.595766                    | 3.852908                    |
| 748 | Nickel                          | •           |              | -8.5016209           | 0.525724                    | 0.558796                    |
| 749 | Norflurazon                     |             |              | 499.64357            | 0                           | 0                           |
| 750 | Oils, biogenic                  |             |              | 76.0067              | 99.77797                    |                             |
| 751 | Oils, unspecified               | Soil        | g            | 221.47176            | 27.23104                    | 30.8224                     |
| 752 | Orbencarb                       | Soil        | mg           | 27.681795            | 0.874236                    | 0.894769                    |



| No  | Substance               | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-------------------------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 753 | Oxamyl                  | Soil        | mg   | 5.6430443            | 0                           | 0                           |
| 754 | Paraquat                | Soil        | mg   | 29.096801            | 0                           | 0                           |
| 755 | Parathion               | Soil        | mg   | 7.2891265            | 0                           | 0                           |
| 756 | Pendimethalin           | Soil        | mg   | 85.822271            | 0                           | 0                           |
| 757 | Permethrin              | Soil        | μg   | 102.86848            | 0                           | 0                           |
| 758 | Phorate                 | Soil        | mg   | 15.283635            | 0                           | 0                           |
| 759 | Phosphorus              | Soil        | mg   | 394.2075             | 35.40921                    | 43.55746                    |
| 760 | Piperonyl butoxide      | Soil        | mg   | 72.708608            | 0                           | 0                           |
| 761 | Pirimicarb              | Soil        | μg   | 7.3720447            | 0.638553                    | 0.792097                    |
| 762 | Potassium               | Soil        | g    | 2.3431569            | 0.219199                    | 0.267057                    |
| 763 | Profenofos              | Soil        | mg   | 8.1115843            | 0                           | 0                           |
| 764 | Prometryn               | Soil        | mg   | 254.54344            | 0                           | 0                           |
| 765 | Propargite              | Soil        | mg   | 2.0720626            | 0                           | 0                           |
| 766 | Pyriproxyfen            | Soil        | μg   | 73.476653            | 0                           | 0                           |
| 767 | Pyrithiobac sodium salt | Soil        | mg   | 5.6430443            | 0                           | 0                           |
| 768 | Silicon                 | Soil        | g    | 4.6969895            | 0.246241                    | 0.304162                    |
| 769 | Sodium                  | Soil        | g    | 171.58775            | 0.662214                    | 0.731702                    |
| 770 | Spinosad                | Soil        | μg   | 764.15249            | 0                           | 0                           |
| 771 | Strontium               | Soil        | mg   | 21.0852              | 3.110261                    | 3.465602                    |
| 772 | Sulfur                  | Soil        | g    | 2.6014061            | 0.229033                    | 0.256535                    |
| 773 | Sulfuric acid           | Soil        | ng   | 118.59343            | 52.28056                    | 52.7926                     |
| 774 | Tebufenozide            | Soil        | μg   | 220.4358             | 0                           | 0                           |
| 775 | Tebutam                 | Soil        | μg   | 403.27967            | 8.520297                    | 9.129604                    |
| 776 | Teflubenzuron           | Soil        | μg   | 341.74427            | 10.79284                    | 11.04632                    |
| 777 | Thiamethoxam            | Soil        | mg   | 2.0573696            | 0                           | 0                           |
| 778 | Thidiazuron             | Soil        | mg   | 15.048313            | 0                           | 0                           |
| 779 | Thifensulfuron-methyl   | Soil        | μg   | 293.90661            | 0                           | 0                           |
| 780 | Thiram                  | Soil        | μg   | 1.9284571            | 0.570903                    | 0.580354                    |
| 781 | Tin                     | Soil        | mg   | 6.5165565            | 0.292943                    | 0.293345                    |
| 782 | Titanium                | Soil        | mg   | 40.743833            | 2.805549                    | 3.704013                    |
| 783 | Tralomethrin            | Soil        | μg   | 176.34513            | 0                           | 0                           |
| 784 | Tribufos                | Soil        |      |                      | 0                           | 0                           |
| 785 | Trichlorfon             | Soil        | mg   | 72.708608            | 0                           | 0                           |
| 786 | Trifluralin             | Soil        | mg   | 190.27713            | 0                           | 0                           |



| Νο  | Substance | Compartment | Unit | OEM Office<br>System | Reman 1<br>Office<br>System | Reman 2<br>Office<br>System |
|-----|-----------|-------------|------|----------------------|-----------------------------|-----------------------------|
| 787 | Vanadium  | Soil        | mg   | 1.1662181            | 0.080304                    | 0.106021                    |
| 788 | Zinc      | Soil        | mg   | 262.51924            | 28.53734                    | 26.79166                    |



## **10.** Appendix D: Uncertainty Results

| Impact category                       | A >=<br>B  | Mean          | Median    | SD           | CV (Coefficient of<br>Variation) | 2.50%             | 97.50<br>%        | Std.err.of<br>mean |
|---------------------------------------|------------|---------------|-----------|--------------|----------------------------------|-------------------|-------------------|--------------------|
| Agricultural land occupation          | 0%         | -76.4         | -74.1     | 16.7         | -21.80%                          | -110              | -52.8             | -0.00691           |
| Climate change                        | 0%         | -922          | -918      | 62.9         | -6.83%                           | -<br>1.06E+<br>03 | -806              | -0.00216           |
| Fossil depletion                      | 0%         | -282          | -280      | 26.5         | -9.40%                           | -335              | -237              | -0.00297           |
| Freshwater<br>ecotoxicity             | 0%         | -22.1         | -20.3     | 8.37         | -37.90%                          | -44.3             | -11.8             | -0.012             |
| Freshwater<br>eutrophication          | 0%         | -0.515        | -0.46     | 0.264        | -51.40%                          | -1.14             | -0.222            | -0.0163            |
| Human toxicity                        | 0%         | -566          | -504      | 261          | -46%                             | -<br>1.24E+<br>03 | -280              | -0.0145            |
| Ionising<br>radiation                 | 0%         | -223          | -163      | 186          | -83.40%                          | -762              | -60.4             | -0.0264            |
| Marine<br>ecotoxicity                 | 0%         | -21.8         | -20.2     | 7.99         | -36.60%                          | -43.8             | -12               | -0.0116            |
| Marine<br>eutrophication              | 0%         | -0.257        | -0.256    | 0.021        | -8.19%                           | -0.3              | -0.217            | -0.00259           |
| Metal depletion                       | 0%         | -804          | -803      | 53.2         | -6.61%                           | -918              | -708              | -0.00209           |
| Natural land<br>transformation        | 16.2<br>0% | -0.178        | -0.177    | 0.188        | -106%                            | -0.555            | 0.184             | -0.0334            |
| Ozone depletion                       | 0%         | -7.04E-<br>05 | -6.88E-05 | 1.30E<br>-05 | -18.50%                          | -<br>0.0001       | -<br>5.03E-<br>05 | -0.00584           |
| Particulate<br>matter<br>formation    | 0%         | -2.22         | -2.18     | 0.282        | -12.70%                          | -2.9              | -1.78             | -0.00402           |
| Photochemical<br>oxidant<br>formation | 0%         | -2.72         | -2.68     | 0.28         | -10.30%                          | -3.36             | -2.29             | -0.00326           |
| Terrestrial acidification             | 0%         | -3.51         | -3.48     | 0.302        | -8.59%                           | -4.14             | -3                | -0.00271           |
| Terrestrial ecotoxicity               | 0%         | -0.186        | -0.18     | 0.030<br>2   | -16.20%                          | -0.264            | -0.143            | -0.00513           |
| Urban land<br>occupation              | 0%         | -11.5         | -11       | 2.96         | -25.80%                          | -19.1             | -7.41             | -0.00815           |
| Water depletion                       | 0%         | -17           | -16.9     | 1.77         | -10.40%                          | -21               | -14.1             | -0.00329           |

#### Table 27: Reman office system (A) and OEM office System (B) Uncertainty



### 11. Critical Review Committee Approval

November 29, 2016

# Panel review of Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir® office system at Davies Office, Inc. to an OEM office system

Reviews of "Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir<sup>®</sup> office system at Davies Office, Inc. to an OEM office system" have been carried out by a panel of three life cycle assessment professionals. The panel has concluded that the study conforms to ISO 14044:2006 LCA standards for a full LCA to be published with comparative assertions.

This document summarizes the members of the peer review panel, panel review process, and panel comments with practitioner responses for three versions of the report. The final version, titled "Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir<sup>®</sup> office system at Davies Office, Inc. to an OEM office system" and dated November 17, 2016 is ISO compliant; previous versions are not, as indicated in this summary.

In this document, Panel Comments are in blue, the Practitioner Responses are in red, and final panel comments are in green. Oldest comments from the first version of the report are listed first (top of the cell) and comments listed on the Final Report listed last (bottom of the cell).

The panel chair has issued a letter of compliance to the LCA authors, to be included with this document in the LCA report.

#### **Panel Review Process**

Three versions of the LCA report were provided to the panel chair and distributed to panel members for review. In general, report reviews followed this process:

- Each panel member completed an independent review of the report and completed the attached checklist. Completed checklists and reports with comments in tracked changes mode were submitted to the panel chair and discussed via conference call to provide additional detail and come to a consensus.
- Panel comments are summarized in this document, with additional comments in the form of track changes on the report.
- The comments and suggestions in this document were forwarded to the LCA commissioner. The reporting format follows the list of ISO 14044 requirements for comparative studies.
- A "YES" indicates that either the required element was addressed adequately or was not applicable. A "YES, however" indicates that the required element was addressed, and can be strengthened by an edit or addition to the report. A "NO" indicates that the requirement was not adequately addressed and comments are provided, including a description of the problem and recommendations for revisions.

The three versions of the reports reviewed include:

- Life Cycle Analysis Results: Davies Results, file dated August 8, 2016
- Life Cycle Analysis Results: Davies Results", file dated October 7, 2016, and a copy of this document with the *Practitioner Response*



• Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir<sup>®</sup> office system at Davies Office, Inc. to an OEM office system." dated November 17, 2016, and a copy of this document with the *Practitioner Response* 

#### Panel chair:

Kate Winnebeck, LCACP, New York State Pollution Prevention Institute, Rochester Institute of Technology

#### **Contributing members of the panel:**

Dr. Anahita Williamson Thaddeus Owen, Sr. Engineer, Sustainability, Herman Miller and Owner OTEC LLC Roy Green, HBF & Gunlocke

#### Panel Review Results

#### Are the methods used to carry out the LCA consistent with ISO 14044?

- Panel: No. Please see the Comments/Recommendations column in this document as well as the summary section at the end for specific comments.
- Panel: requirement met

| Reporting                                                                                          | Met?         |
|----------------------------------------------------------------------------------------------------|--------------|
| a) General Aspects                                                                                 |              |
| 1) LCA commissioner, practitioner of LCA (internal or external);                                   | YES, however |
| Panel: Recommend actual practitioner's name(s) who performed the work should be listed.            |              |
| Practitioner response: Added practitioner bio in section 1.3 LCA Practitioner                      |              |
| Panel: requirement met                                                                             |              |
| 2) Date of report;                                                                                 | NO           |
| Panel: Put the date on the front page of the report.                                               |              |
| Practitioner response: Added date to front page and is current date of revisions                   |              |
| Panel: requirement met                                                                             |              |
| 3) Statement that the study has been conducted according to the requirements of this International | YES          |
| Standard.                                                                                          |              |
| b) Goal of the Study                                                                               |              |
| 1) Reasons for carrying out the study;                                                             | YES, however |
| Panel: A discussion of why this study is important and how it can add value to the industry sector |              |
| would be helpful. See the report for specific comment & location within the report.                |              |
| Practitioner response: Added reference and language to section 2.2 regarding importance.           |              |
| Panel: requirement met                                                                             |              |
| 2) Its intended applications;                                                                      | YES          |
| 3) The target audiences;                                                                           |              |
|                                                                                                    | YES          |
|                                                                                                    |              |
| 4) Statement as to whether the study intends to support comparative assertions intended to be      |              |
| disclosed to the public                                                                            | NO           |
|                                                                                                    |              |



| Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Met?         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Panel: This does not appear in the Goal section of the study – update language in the goal to add "in the form of a comparative assertion" or similar language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Practitioner response: Updated language in section 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Panel response: Page 17 says "This life cycle assessment report is intended for public dissemination, subject to the terms and conditions discussed in the Disclaimer section. Page 20 says "this assessment may be disclosed to the public". For consistency, this language should be made clear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Practitioner response: Page 17 and page 20 updated to read as follows for consistency: "This life cycle assessment is intended for public dissemination, and may be disclosed to the public subject to the terms and conditions set forth in the Acknowledgements and Disclaimers section"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| c) Scope of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 1) Function, including<br>Panel: Clearly laying out all the scenarios being modeled in the LCA would be helpful.<br>Practitioner response: Added description in section 2.3.2<br>Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YES, however |
| i) Statement of performance characteristics;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES          |
| <ul> <li>ii) Any omission of additional functions in comparisons.</li> <li>Panel: Clarify if comparison is OEM Avenir to Davies Avenir, and if any components (such as task lights) are omitted from either scenario. See the report for specific comments and locations within the report.</li> <li>Practitioner response: Added clarification in section 2.3.2. This is a comparison between Davies Reman Avenir and OEM Avenir. Electrical, communication and lighting are omitted from study.</li> <li>Panel: requirement met</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO           |
| 2) Functional unit, including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES          |
| i) Consistency with goal and scope;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YES          |
| ii) Definition;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YES          |
| <ul> <li>iii) Result of performance measurement.</li> <li>Panel: Need to justify 10 year lifespan portion of functional unit. BIFMA PCR states that BIFMA X5.5 &amp; 5.6 testing determines the product lifetime and if no such testing has been performed, Warranty alone is not enough to justify service life.</li> <li>Practitioner response: Added comment and reference in section 2.3.2. Davies indicated that furniture is typically in service over 10 years and only gets retired due to the changing needs of their customers and not due to any failure of the furniture.</li> <li>Panel response: Consider adding the vintage of the Steelcase products remanufactured in cycle 1 and the remanufacture cycle 2 timing (between cycle 1 and 2) to further justify the 10 year time period. It is not clear from the report how long of a time passes between reman cycles.</li> <li>Practitioner response: Davies does not track age of the components being remanufactured, the</li> </ul> | NO           |
| vintage of the components in this study can be assumed to be from the early 2000's (2000 – 2004) based on the manuals referenced. The 10 year life span is subjective on a case by case basis and influenced by changing trends, styles, company expansion or downsizing, along with functional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |



| Reporting                                                                                                                                                                      | Met?         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| requirements. The time between first and second remanufacturing cycle is assumed to be similar                                                                                 |              |
| since the performance of the reman office is the same if not better than OEM.                                                                                                  |              |
| Panel: requirement met                                                                                                                                                         |              |
| 3) System boundary                                                                                                                                                             | NO           |
| Panel: Met requirement for remanufacturing only; not for the OEM. Need to include information on                                                                               |              |
| process flow & system boundaries for OEM. See comments in the report.                                                                                                          |              |
| Reman product receives credit for using OEM product and also credit for recycling at EOL – this is                                                                             |              |
| double accounting. Reman should not be taking credit at EOL, per the PCR.                                                                                                      |              |
| Practitioner response: Section 2.3.3, added OEM process flow and boundary. Process flow from OEM                                                                               |              |
| Answer in Dietz study and processes and materials not in Avenir are indicated, the remaining                                                                                   |              |
| processes are assumed representative of the Avenir.                                                                                                                            |              |
| The impacts are averaged over the number of lifecycles for the product.                                                                                                        |              |
| Panel response: This statement needs to be clarified.                                                                                                                          |              |
| Practitioner response: Impacts are aggregated from each life cycle the product experiences and is                                                                              |              |
| divided by the number of life cycles. (L1+L2+L3)/3                                                                                                                             |              |
| Practitioner response: Added clarification in section 2.4 Methodology                                                                                                          |              |
| Panel response: Appears that double counting still occurs – taking credit and subtracting burden for                                                                           |              |
| recycling scrap manufacturing materials. The materials should be recycled with 0 net impact/benefit.                                                                           |              |
| Practitioner response: The recycling of steel has been removed from the independent life cycle                                                                                 |              |
| comparison between OEM and Reman. The impact resulted in the Reman 1 and Reman 2 cycle being                                                                                   |              |
| similar. Reman 1 has additional energy requirements for component sizing, while reman 2 has                                                                                    |              |
| increased replacement rates for materials. The differences balance the two life cycles so that their                                                                           |              |
| impacts appear equivalent.                                                                                                                                                     |              |
| Panel: requirement met                                                                                                                                                         |              |
| i) Omissions of life cycle stages, processes or data needs;                                                                                                                    | NO           |
| Panel: Need to very clearly disclose that Reman is not accounting for all OEM stages, either in                                                                                |              |
| limitations or omissions section of the report.                                                                                                                                |              |
| Practitioner response: Added a paragraph in section 2.3.4 boundary exclusions                                                                                                  |              |
| Panel: requirement met                                                                                                                                                         |              |
| ii) Quantification of energy and material inputs and outputs; and                                                                                                              | NO           |
| Panel: Data for OEM is not clear. Inputs and outputs need to be well defined.                                                                                                  |              |
| Practitioner response: Updated in report for system boundary 2.3.3                                                                                                             |              |
| Panel: requirement met                                                                                                                                                         |              |
| iii) Assumptions about electricity production.                                                                                                                                 | NO           |
| Panel: These are not addressed. Electricity for the OEM should likely be Mexico production vs US (or                                                                           |              |
| NY) based for Davies. OEM data is from 2006; Steelcase is likely to be more energy efficient now. It                                                                           |              |
| is unclear how grid energy was modeled and how MJ for manufacturing of OEM was calculated. Also                                                                                |              |
| not clear where the data came from.                                                                                                                                            |              |
| Practitioner response: Section 3.1.2 describes how OEM energy is derived. MJ for OEM                                                                                           |              |
| manufacturing was derived from Dietz 2005, The study provides rates for welding and powder                                                                                     |              |
| coating which are applied to Ecoinvent processes in simapro,                                                                                                                   |              |
| Panel: requirement met                                                                                                                                                         | VEC however  |
| 4) Cut-off criteria for initial inclusion of inputs and output, including<br>Panel: Need to discuss whether cut off or avoided burden model is used to model recycling and how | YES, however |
|                                                                                                                                                                                |              |
| this may impact the results.                                                                                                                                                   |              |



| Reporting                                                                                                                                                                                                         | Met? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Practitioner response: Avoided burden is used to model recycling. Updated in report                                                                                                                               |      |
| Panel: requirement met                                                                                                                                                                                            |      |
| i) Description of cut-off criteria and assumptions;                                                                                                                                                               | NO   |
| Panel: Criteria is provided for mass only. Provide criteria for energy, per the BIFMA PCR (it is unclear                                                                                                          |      |
| f the PCR is followed in its entirety throughout the analysis or only the functional unit section).                                                                                                               |      |
| Discuss assumptions.                                                                                                                                                                                              |      |
| Practitioner response: More PCR definition regarding how it is followed was added to section 2.1 and                                                                                                              |      |
| ndicates what was followed and what was not.                                                                                                                                                                      |      |
| Energy added to cutoff in section 2.3.5                                                                                                                                                                           |      |
| Panel response: While assumptions are addressed throughout the report, many are missing from the                                                                                                                  |      |
| ummary table in section 3.2. We suggest adding them, so that all study assumptions are in one place.                                                                                                              |      |
| Assumptions include:                                                                                                                                                                                              |      |
| a. It is assumed that since the Answer and Avenir <sup>®</sup> both have similar component composition that                                                                                                       |      |
| he production process for the Answer will also be similar to the Avenir <sup>®</sup> .                                                                                                                            |      |
| . Use phase of both Davies and the OEM fall within the boundary, however it is assumed that both                                                                                                                  |      |
| office systems will experience similar use and impacts therefore this phase of the life cycle is ignored.                                                                                                         |      |
| . The second remanufacturing life cycle is slightly higher compared to the first due to the fact that                                                                                                             |      |
| components are assumed to not be resized in the second life cycle.                                                                                                                                                |      |
| d. The current model assumes only the steel material in the panel frame and file storage go to                                                                                                                    |      |
| ecycling, all other materials are sent to landfill.                                                                                                                                                               |      |
| e. The individual component process flows were adopted from (Dietz 2005) study and is assumed                                                                                                                     |      |
| that these processes are representative of the Avenir® process flow. Portions of the Steelcase Answer                                                                                                             |      |
| process flows may vary from Avenir <sup>®</sup> based on the Avenir <sup>®</sup> material content.                                                                                                                |      |
| The lateral file process flow illustrated in Figure 12 for the Steelcase Answer. It can be assumed                                                                                                                |      |
| that this is representative of the Avenir <sup>®</sup> process. Eliminated from the evaluation are the plastic                                                                                                    |      |
| naterials and electroplating.                                                                                                                                                                                     |      |
| g. The Steelcase Answer panel process flow illustrated in Figure 13 is assumed to be representative of the Avenir <sup>®</sup> process, excluding the specific components highlighted. The electrical and plastic |      |
| components were excluded along with the aluminum slatwall which were not observed in the                                                                                                                          |      |
| Avenir <sup>®</sup> .                                                                                                                                                                                             |      |
| n. The Steelcase Answer Work Surface process flow illustrated in Figure 14 is assumed to be                                                                                                                       |      |
| epresentative of the Avenir <sup>®</sup> process flow, excluding the highlighted materials and processes.                                                                                                         |      |
| . Material and process models for OEM packaging are derived from (Dietz 2005) analysis of Steelcase                                                                                                               |      |
| Answer office products, which are assumed to share the same packaging with the Steelcase Avenir <sup>®</sup>                                                                                                      |      |
| ystem.                                                                                                                                                                                                            |      |
| . This study assumes that 100% of the steel contained within the panel and file/pedestal storage will                                                                                                             |      |
| be recycled. The remaining panel materials are sent to landfill. 100% of the work surface is assumed                                                                                                              |      |
| o go through the MSW waste stream.                                                                                                                                                                                |      |
| Practitioner response: The practitioners appreciate the review team response and thorough                                                                                                                         |      |
| lescription of assumptions above. The practitioners have taken these recommendations and                                                                                                                          |      |
| ipplied to the assumptions section of the report.                                                                                                                                                                 |      |
| Panel: requirement met                                                                                                                                                                                            |      |
| ii) Effect of selection on results; and                                                                                                                                                                           | NO   |
| Panel: Discuss more thoroughly in the report. See comments in report.                                                                                                                                             |      |
| Practitioner response: Addressed in report.                                                                                                                                                                       |      |
| Panel: requirement met                                                                                                                                                                                            |      |



| ROCHESTER INSTITUTE OF TECHNOLOGY |
|-----------------------------------|
|-----------------------------------|

| Reporting                                                                                               | Met?         |
|---------------------------------------------------------------------------------------------------------|--------------|
| iii) Inclusion of mass, energy and environmental cut-off criteria                                       | NO           |
| Panel: Same comment as 4i. Environmental cut offs are not discussed.                                    |              |
| Practitioner response: More PCR definition regarding how it is followed was added to section 2.1 and    |              |
| indicates what was followed and what was not.                                                           |              |
| Energy added to cutoff in section 2.3.5 No environmental cutoff is applied                              |              |
| Panel: requirement met                                                                                  |              |
| d) Life Cycle Inventory Analysis                                                                        |              |
| 1) Data collection procedures;                                                                          | YES, however |
| Panel: See specific comments in report.                                                                 |              |
| Practitioner response: Addressed in report, comments replied to.                                        |              |
| Panel: requirement met                                                                                  |              |
| <ol><li>Qualitative and quantitative description of unit processes;</li></ol>                           | YES          |
| 3) Sources of published literature;                                                                     | YES, however |
| Panel: See specific comments in the report where references are needed.                                 |              |
| Practitioner response: Updated references in report where there were specific comments                  |              |
| Panel: requirement met                                                                                  |              |
| 4) Calculation procedures;                                                                              | YES, however |
| Panel: Add more detail; see comments in report.                                                         |              |
| Practitioner response: Updated in report, comments addressed                                            |              |
| Panel: requirement met                                                                                  |              |
| 5) Validation of data, including                                                                        | NO           |
| i) Data quality assessment;                                                                             |              |
| ii) Treatment of missing data;                                                                          |              |
| Panel: This section is missing; please include a section that specifically addresses data quality. Data |              |
| validation was performed for the primary data but not for any of the secondary data. Missing data       |              |
| was not listed nor discussed. Need to list version of ecoinvent dataset that was used. Need more        |              |
| clarity on OEM datasets; where did they come from and are they representative of the systems            |              |
| studied?                                                                                                |              |
| Practitioner response: Section 3.4 discusses data quality. See updates in subsections.                  |              |
| Panel: requirement met                                                                                  |              |
| <ol><li>Sensitivity analysis for refining the system boundary;</li></ol>                                | NO           |
|                                                                                                         |              |
| Panel: Sensitivity needs to be run against the OEM system being compared, such as energy                |              |
| production in another country and lower OEM energy use during manufacturing due to efficiencies         |              |
| gained in the last 10 years.                                                                            |              |
| Please at least mention this (sensitivity) under 2.3.4 'Boundary Exclusions'                            |              |
| Practitioner response: Sensitivity added for additional energy mix by region. Used Mexico and           |              |
| Michigan as OEM scenarios while using NY for reman.                                                     |              |
| Panel: requirement met                                                                                  |              |
| 7) Allocation principles and procedures                                                                 | NO           |
| i) Documentation and justification of allocation procedures; and                                        |              |
| ii) Uniform application of allocation procedures.                                                       |              |



| Reporting                                                                                              | Met?           |
|--------------------------------------------------------------------------------------------------------|----------------|
| Panel: OEM allocation is not clear. Please update Section 2.3.7 of the report as it is unclear and     |                |
| difficult to follow.                                                                                   |                |
| Practitioner response: Section updated                                                                 |                |
| Panel: requirement met                                                                                 |                |
| e) Life Cycle Impact Assessment, where applicable:                                                     |                |
| 1) The LCIA procedures, calculations and results of the study;                                         | NO             |
| Panel: It is unclear if the results from the 2005 study were used to model Reman or if the data from   |                |
| the study was used to build a model in SimaPro to get the results. See additional comments in the      |                |
| report.                                                                                                |                |
| Practitioner response: Energy, process and material data were used from the 2005 study. The OEM        |                |
| model was built in Simapro based on measurements of the OEM core collected at Davies prior to          |                |
| remanufacturing. The energy and process data from the 2005 LCA was then implemented in the             |                |
| model for the OEM along with any material composition data. Report has been updated to clarify         |                |
| Panel: requirement met                                                                                 |                |
| 2) Limitations of the LCIA results relative to the defined goal and scope of the LCA;                  | NO             |
| Panel: The goal and scope contain language about comparison of OEM to Davies systems; the              |                |
| limitations section does not address LCIA limitations that address this goal.                          |                |
| It is unclear how OEM data was modeled (see comment under e1 above), making it difficult to            |                |
| evaluate whether or not the limitations are well addressed. See additional comments in report.         |                |
| Practitioner response: Updated in report section 4.3 along with updates from in e1 above               |                |
| Panel: requirement met                                                                                 |                |
| 3) The relationship of LCIA results to the defined goal and scope, see 4.2;                            | YES            |
| 4) The relationship of the LCIA results to the LCI results, see 4.4;                                   | YES            |
| 5) Impact categories and category indicators considered, including a rationale for their selection and | YES            |
| a reference to their source;                                                                           | 125            |
| 6) Descriptions of or reference to all characterization models, characterization factors and methods   | YES            |
| used, including all assumptions and limitations;                                                       | 125            |
| 7) Descriptions of or reference to all value-choices used in relation to impact categories,            | YES            |
| characterization models, characterization factors, normalization, grouping, weighting and, elsewhere   | 123            |
| in the LCIA, a justification for their use and their influence on the results, conclusions and         |                |
| recommendations; and                                                                                   |                |
| 8) A statement that the LCIA results are relative expressions and do not predict impacts on category   | NO             |
| endpoints, the exceeding of thresholds, safety margins or risks and, when included as a part of the    | NO             |
| LCA                                                                                                    |                |
| Panel: Report states "Recipe v1.11 (2014) impact assessment method chosen which links 18 midpoint      |                |
| impact categories to 3 damage categories (end points)." However, a statement that "the LCIA results    |                |
| are relative expressions and do not predict impacts on category endpoints, the exceeding of            |                |
| thresholds, safety margins or risk" should be added to the limitation section.                         |                |
| Practitioner response: Added to limitations section 2.3.6                                              |                |
| Panel: requirement met                                                                                 |                |
| ii) A statement and justification of any grouping of the impact categories;                            | Not applicable |
| Panel: Does not appear grouping was performed                                                          |                |
| iii) Any further procedures that transform the indicator results and a justification of the selected   | Not applicable |
| references, weighting factors, etc.;                                                                   |                |
| Panel: Does not appear weighting was used                                                              |                |
| FAUEL DOES OUT AUDEAL WEISTUNG WAS USED                                                                | 1              |



| Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Met?           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| iv) Any analysis of the indicator results, for example sensitivity and uncertainty analysis or the use of environmental data, including any implication for the results;                                                                                                                                                                                                                                                                                                                                                                                                                    | NO             |
| Panel: Sensitivity needs to be run against the OEM system being compared, such as energy production in another country and lower OEM energy use during manufacturing due to efficiencies gained in the last 10 years.                                                                                                                                                                                                                                                                                                                                                                       |                |
| Clarify why uncertainty analysis was not performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Practitioner response: Sensitivity evaluated for energy in Mexico, Michigan for OEM vs NY for reman.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Uncertainty analysis added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| <ul> <li>v) Data and indicator results reached prior to any normalization, grouping or weighting shall be<br/>made available together with the normalized, grouped or weighted results.</li> <li>Panel: Does not appear that weighting or grouping were performed.</li> </ul>                                                                                                                                                                                                                                                                                                               | Not applicable |
| f) Life Cycle Interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |
| 1) The results;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES, however   |
| Panel: While the results provided are clear and Davies results are understandable, it is not clear how<br>the OEM results are calculated as the data source is not clear. See summary comments at end of this<br>document.<br>Practitioner response: OEM is calculated in the same manner as Davies with ReCiPe. OEM process<br>and energy information are derived from the OEM LCA conducted at the University of Michigan (Dietz<br>2005) Report has been updated<br>Panel: requirement met                                                                                               |                |
| 2) Assumptions and limitations associated with the interpretation of results, both methodology and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO             |
| data related;<br>Panel: A discussion of assumptions and limitations of results, in terms of both methodology and data<br>choices is not included. There appear to be limitations in that the OEM data is old and no longer uses<br>the same manufacturing plant and thus may not be comparable to 2015 Davies manufacturing<br>energy.<br>Furthermore, the data assumptions and limitations that were made – and therefore impact the<br>results – are not adequately discussed.<br>Practitioner response: Expanded on OEM limitations and data source in report.<br>Panel: requirement met |                |
| 3) Data quality assessment;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YES            |
| 4) Full transparency in terms of value-choices, rationales and expert judgments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES            |
| g) Critical Review, where applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·              |
| <ol> <li>Name and affiliation of reviewers;</li> <li>Critical review reports;</li> <li>Responses to recommendations.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES            |
| Further Reporting Requirements for Comparative Assertion Intended to be Disclosed to the Public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| a) Analysis of material and energy flows to justify their inclusion or exclusion;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES            |
| b) Assessment of the precision, completeness and representativeness of data used;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO             |



| Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Met?           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Panel: These assessments were performed for the Davies primary data and are missing for the OEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| data and secondary data used in both the OEM and Davies life cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| Practitioner response: Added to the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| c) Description of the equivalence of the systems being compared in accordance with 4.2.3.7;<br>Panel: The study should very clearly lay out the two systems, OEM system studied, and the Davies<br>System outlining the age of the data, the System name (Davies compared Avenir refurbished product<br>to Answer product), components of each system and prove the equivalence of the systems being<br>compared. Other potential equivalence issues include 2005 Steelcase data vs. 2015 Davies data,<br>Grand Rapids manufacturing of OEM vs Mexico Manufacturing, and any efficiencies that may have<br>been gained in 10 years at OEM.<br>Practitioner response: 2005 was a study conducted for. The materials in Davies and OEM are exactly<br>the same in this model, the only difference is the manufacturing energy and material usage. It is<br>stated in the report that the study compares OEM Avenir (based on data from LCA for Answer) with<br>Avenir reman.<br>Panel: requirement met | NO             |
| d) Description of the critical review process;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YES            |
| e) An evaluation of the completeness of the LCIA;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YES            |
| f) A statement as to whether or not international acceptance exists for the selected category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO             |
| indicators and a justification for their use;<br>Panel: This information is provided for ReCiPe and is missing for CED. See section 4.1.2 of the report.<br>Practitioner response: Added reference and additional discussion in the text relating to acceptance<br>and reasoning for use in this study.<br>Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| <ul> <li>g) An explanation for the scientific and technical validity and environmental relevance of the category indicators used in the study;</li> <li>Panel: The report is missing the reasoning for the indicators the LCA team chose to focus on, such as climate change. It is unclear why this indicator was chosen and not others. See the report for additional comments.</li> <li>Practitioner response: Explanation added in report: the normalized ratio of impacts between OEM and reman are similar for most categories. Additional discussion for any deviation added, along with charts for all categories compared.</li> <li>Panel: requirement met</li> </ul>                                                                                                                                                                                                                                                                                                                       | NO             |
| h) The results of the uncertainty and sensitivity analyses;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO             |
| Panel: See comment under header e.8.iv. of this document.<br>Practitioner response: Uncertainty analysis added, additional sensitivity conducted, report updated.<br>Panel: requirement met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| <ul> <li>i) Evaluation of the significance of the differences found.</li> <li>Panel: A summary or conclusion section is missing from the report. This is where the significant differences between the OEM and Davies system should be summarized, leaving the reader with a clear understanding of the high level results.</li> <li>Practitioner response: Conclusion section added</li> <li>Panel: requirement met</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO             |
| If grouping is included in the LCA, add the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l              |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not applicable |



| Reporting                                                                                            | Met?           |
|------------------------------------------------------------------------------------------------------|----------------|
| Panel: Grouping was not part of the study                                                            |                |
| b) A statement that conclusions and recommendations derived from grouping are based on value-        | Not applicable |
| choices;                                                                                             |                |
| Panel: It does not appear this is needed as grouping was part of the study                           |                |
| c) A justification of the criteria used for normalization and grouping (these can be personal,       | Not applicable |
| organizational or national value-choices);                                                           |                |
| Panel: It does not appear weighting or normalization were performed                                  |                |
| d) The statement that "ISO 14044 does not specify any specific methodology or support the            | Not applicable |
| underlying value choices used to group the impact categories";                                       |                |
| e) The statement that "The value-choices and judgments within the grouping procedures are the sole   | Not applicable |
| responsibilities of the commissioner of the study (e.g. government, community, organization, etc.)". |                |

#### Are the methods used to carry out the LCA scientifically and technically valid?

- Panel: The methods used to carry out the Davies portion of the LCA are scientifically and technically valid. It's unclear what methods were used to carry out the OEM assessment.
  - o Practitioner response: Same method used for OEM
  - Panel response: please elaborate and give details here explaining the methods for the OEM assessment
  - Material mass of the components was obtained from the OEM cores collected at Davies. Other material composition and process data for the OEM were derived from the Dietz 2005 study. Since the components in the Dietz 2005 study are similar to the Avenir remanufactured by Davies it was assumed that the processes are the same. Raw data from the Dietz 2005 study was also used and an OEM model was built in Simapro. The OEM model was then run using the ReCiPe Midpoint impact method for comparison to the reman.
- Panel: requirement met

#### Are the data used appropriate and reasonable in relation to the goal of the study?

- Panel: It is questionable whether, with the large contribution of manufacturing energy and the direct comparison of manufacturing energy from the OEM to the Davies product that 2005 manufacturing energy taken from the OEM LCA should be compared to 2015 Davies energy use, especially assuming the OEM has made energy reduction or efficiency progress, which may be able to be determined from BIFMA level results, and the fact that Manufacturing of the OEM product likely no longer occurs in Grand Rapids, MI.
  - Practitioner response: It can be assumed that the Avenir cores were produced 10 years prior to this assessment or more and therefore would have the embodied energy from that time. Because the study combines the burden for each life cycle and averages based on the number of life cycles, the overall magnitude of the impacts for each life cycle may vary, however the relative impact reduction from life cycle to life cycle should be similar.
- Panel: It is unclear exactly what data was used for the OEM system was it from the 2005 or 2006 Steelcase LCA? Were the Steelcase LCA results used or was LCI data pulled, remodeled, and run with Recipe 2014? It is critical that this is well documented.
  - Practitioner response: Data used from Dietz 2005 Thesis at University of Michigan for Steelcase Answer office products. Raw data was extracted and re run in simapro for the OEM model built. Energy material and process information from the OEM study was used to build the model in simapro.



• Panel: requirement met

#### Do the interpretations reflect the limitations identified and the goal of the study?

- Panel: The interpretations that the Davies process is less impactful overall is likely not in question, however, the amount by which it is less impactful is questionable due to the dated nature of the OEM manufacturing data and the likelihood that the OEM has moved operations out of Michigan. Without sensitivity analyses, this conclusion cannot be drawn.
  - Practitioner response: Sensitivity has been conducted and included in the report for variation of energy mix by location.
  - Panel response: elaborate and detail the sensitivity analyses here, the results, and how the results affect the broader LCA results
  - Practitioner response: The sensitivity analysis for energy mix comparison used one representative product, which was a 65 x 48 inch panel that is not indexed during the remanufacturing cycles. Each cycle starts with the OEM and ends with end of life disposition previously defined in this report. This sensitivity used the US average as the baseline, where the assumption is both the OEM and Davies use that energy mix. The other scenarios varied the OEM between the Mexico and Michigan energy mixes while Davies used the New York mix for both. The sensitivity was modeled using both the ReCiPe midpoint and CED methods. The results indicate that the energy mix does not have a significant impact in the life cycles. This can be attributed to the fact that other contributors outweigh the production energy impacts, such as material production.
- Panel: Limitations of the study are not well described. This section of the report needs to be enhanced and should include sensitivity analyses. See the comments in the chart above and within the LCA report.
  - o Practitioner response: Limitations updated and additional sensitivity performed.
  - Panel response: compile a summary of the limitations to include in this section of the report. All of the limitations exist in the report, but are not found in this section.
  - Practitioner response: The lack of current primary OEM Steelcase Avenir<sup>®</sup> data is one limitation that is important to note. The OEM Steelcase LCA referenced in this study is approximately 11 years old at the time of this report, therefore current conditions and practices for the OEM may result in impacts that are greater or less than reported in the OEM study. This can be attributed to improved process efficiencies, change in manufacturing location, or change in materials used.

| Limitation ID | Limitation Description                                                                                                                                                  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | OEM Avenir <sup>®</sup> production data not readily available, production data for Steelcase<br>Answer office products used from (Dietz 2005) Study                     |
| 2             | OEM process and manufacturing data approximately 11 years old, improvements in efficiency, and changes in manufacturing location may result in variation of the impacts |
| 3             | Current OEM packaging materials and practices are unknown                                                                                                               |



| Limitation ID | Limitation Description                                                          |
|---------------|---------------------------------------------------------------------------------|
| 4             | Production energy mix may be different due to changes in manufacturing location |

- Panel: It is unclear if the BIFMA PCR was used consistently, or if only the functional unit portion of the PCR was used. There are discrepancies in the BIFMA PCR methodology and the methodology presented in this report.
  - Practitioner response: The BIFMA PCR was not used in its entirety. Explanation was added to the report to clarify what portions were used explicitly and what portions were used as a guide or reference only.
- Panel: It is unclear whether the LCA report will be publically available. The current language says that it "may be available." Please clarify the intention.
  - Practitioner response: The intent is for this report to be made public. This project was funded in part by the Center of Excellence in Advanced & Sustainable Manufacturing (COE-ASM). There is a disclaimer in the report regarding how this report should be used and if it is made public should be used in its entirety as per the terms and conditions of the COE-ASM, and any abbreviated publications have to be agreed upon by both parties.
- Panel: requirement met

#### Is the study report transparent and consistent?

- Panel: It should be made more clear the limitation of the OEM data and that comparison to this data, while not exact, is likely directionally appropriate. It seems obvious that the Davies process will be less impactful than the OEM and that refurbishing furniture is preferable to recycling or landfilling.
  - Practitioner response: Limitations described in section 4.3 updated. Further clarification made throughout the report where reviewers had comments.
  - Panel response: compile a summary of the limitations to include in this section of the report. All of the limitations exist in the report, but are not found in this section.
  - Practitioner response: Summary table added in section 2.3.6 see response above for Limitations and table.
- Panel: The source of OEM data is not transparent it's unclear which Steelcase study was used as the data source, what data was used from the study (ie. results or LCI data), and how LCIA data was determined (ie. results from the report or LCI data modeled and run with Recipe 2014).
  - Practitioner response:
    - OEM Data derived from Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005
    - Raw data from that study was used to build the OEM Model and run using the current ReCiPe 2014 method.
    - OEM mass measurements and material quantities were collected directly at Davies from the OEM Avenir Cores, prior to remanufacturing. Clarification has been made in the report.
- Panel: requirement met



#### Conclusion

- Panel: The study should include more detail in the limitations section and more clearly address the data limitations, as well as be clearer as to how the OEM data was used in order to clearly meet the ISO requirements. It should be made clearer the case for comparison of older OEM data to current Davies data.
  - Practitioner response: Conclusion added
  - Panel response: the practitioner comment doesn't address the whole of the panel's comments detail the limitations section changes, data limitation section, and comparison of older OEM data to current Davies data.
  - Practitioner response: See responses above regarding limitations, and expansion to the Limitations section in the report. Also, the Conclusion section reiterates limitations of the study and provides guidance on how the results should be used and interpreted for this specific comparison and not broadly applied.
  - Panel: requirement met
- Panel: The study should very clearly lay out the two systems, OEM system studied, and the Davies system outlining the age of the data, the system name (appears that the study compared Avenir refurbished product to Answer OEM product), components of each system and prove the equivalence of the systems being compared.
  - o Practitioner response: Additional explanation added in the report,
  - Panel response: add the explanation here
  - Practitioner response: The study compared the OEM Avenir® to the remanufactured Avenir®. The individual component process flows were adopted from (Dietz 2005) study and is assumed that these processes are representative of the Avenir® process flow. Portions of the Steelcase Answer process flows may vary from Avenir® based on the Avenir® material content. The Answer work surface had steel legs and a process for the production of these legs is included in the Answer process flow, while the Avenir ® does not have these support legs. Materials and processes contained within the Answer that were not found in the Avenir® were excluded. Material mass and product composition were collected at Davies from the Avenir® cores on hand prior to remanufacturing. The (Dietz 2005) study provided the process and additional material information for the OEM.
  - o Panel: requirement met

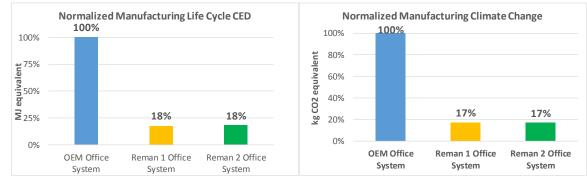
# The critical review panel would like to draw particular attention to the following findings that are of greatest concern:

- It is unclear whether the analysis is comparing the Davies remanufactured office system to the Steelcase OEM Answer or Avenir system. The reviewers struggled with the OEM system, specifically understanding exactly what is included in the system and where the data is from. Throughout the report, the OEM system is difficult to follow.
  - Practitioner response: The study is comparing the OEM Avenir to the Davies remanufactured Avenir<sup>®</sup>. The OEM study of the Answer used primary data to support building of the Avenir model since both are comprised of the same components and materials.
  - Panel: requirement met
- Furthermore, it is unclear whether the LCA team used (1) the results from the 2005 Steelcase LCA or (2) the data in the 2005 Steelcase LCA to build a model in SimaPro and obtained results using ReCiPe 2014. The results presented in the 2005 study are not only more than ten years old, but also use a different version of ReCiPe than the current study, making the comparison inaccurate. It is not clear if the systems scopes are equivalent



and set at facility gate to facility gate or a larger scope. The limitations section needs to be expanded, as detailed in the chart in this document.

- Practitioner response: OEM from : (Dietz, B. A. (2005). *Life cycle assessment of office funiture products* (Doctoral dissertation). Data from the 2005 LCA was used to build a model in Simapro using Recipe 2014.
- Panel response: is this the correct study? Here a doctoral dissertation is cited; throughout the report, a Master's Thesis is cited. Please be consistent and ensure the correct study is cited.
- Practitioner response:
  - The correct study is the master's thesis; report references have been updated
  - Dietz, Bernhard A.; Life Cycle Assessment of Office Furniture Products; Master Thesis; The University
    of Michigan, School of Natural Resources and Environment; Ann Arbor, Michigan; April 2005
- o Panel: requirement met
- The 2005 OEM manufacturing energy is compared to 2015 Davies manufacturing energy. This assumption that the two are comparable should be highlighted, discussed and justified.
  - Practitioner response: It can be assumed that the Avenir cores were produced 10 years prior to this assessment or more and therefore would have the embodied energy from that time. Because the study combines the burden for each life cycle and averages based on the number of life cycles, the overall magnitude of the impacts for each life cycle may vary, however the relative impact reduction from life cycle to life cycle should be similar.
  - Panel: requirement met
- Clarify how the BIFMA PCR was used to guide the LCA. The PCR was not used in its entirety as there are discrepancies in the PCR methodology and the methodology used in this study.
  - Practitioner response: Clarified in the report, section 2.1
  - Panel response: add clarification here
  - Practitioner response: The BIFMA PCR was not intended for a comparative assessment, and not designed with remanufacturing in mind. Therefore, it was only used as a general guide for this study and not followed explicitly. Table 1 was added to the report on pages 18 and 19, and is shown here.


| PCR Category        | General Category Metric/Description                                                                                                                                                                                                                         | Followed in Study<br>(Y/N/ or Guide only) |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Goal and Scope      | The scope of the LCA shall conform to the ISO 14040 series (ISO 14044 Section 4.2.3.1) and be from cradle-to-grave.                                                                                                                                         | Yes                                       |
| Product Description | <ul> <li>Category of the product</li> <li>Number of users</li> <li>Area of physical floor space</li> <li>Photo Image of product(s)</li> <li>The features that the reference product includes in the arrangement / configuration of the LCA study</li> </ul> | Yes                                       |
| Functional Unit     | The functional unit shall be one square meter (1m <sup>2</sup> ) of workspace for a period of 10 years                                                                                                                                                      | Guide Only                                |



| System Boundary      | <ul> <li>Material acquisition and processing</li> <li>Production</li> <li>Distribution, storage, use</li> <li>End of Life</li> </ul>                                                                                                                                                                | Guide Only |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Allocation Rules     | Where possible, allocation should be avoided by dividing<br>unit processes into two or more sub-processes (as specified<br>in ISO 14044, Section 4.3.4, Allocation                                                                                                                                  | Yes        |
| Sensitivity Analysis | <ul> <li>Sensitivity analyses shall be performed when allocation is used</li> <li>If proxy data representing more than 1% of the mass or energy of the system is used, a sensitivity analysis shall be performed using a range from half to twice the reference flow of the unit process</li> </ul> | Guide Only |
| LCIA Method          | TRACI 2.1                                                                                                                                                                                                                                                                                           | Guide Only |

- Panel: requirement met
- In the remanufactured product life cycle, Davies receives their materials burden free (ie. no environmental impact) and also disposes of them burden free at end of life. This is double counting and is not allowed per ISO. Davies can either (1) receive their materials burden free and take the environmental impact of disposal at end of life or (2) receive the OEM burden of making the raw materials and recycle them burden free at the end of life.
  - Practitioner response: Davies does take the burden of end of life of the products, they receive a partial credit during remanufacturing [when?] for avoided burden of the steel when recycling pieces removed when resizing the panels. Davies also takes the burden of disposing of the materials removed from the OEM Core replaced during remanufacture along with the burden of the new replacement materials. At end of life Davies receives an avoided burden for the steel panel frames and steel file storage that can be recycled but takes the burden of the disposal and waste treatment of the other materials not recyclable.
  - Panel response: Taking avoided burden of steel when recycling pieces removed when resizing panels is double counting, which must be avoided. The recycled steel should receive 0 burden/impact when recycled as part of the manufacturing process.
  - Practitioner response: The recycling credit was removed from the independent life cycle comparison. This
    resulted in a slight increase of the impacts for the Reman 1 life cycle. Normalized Impacts for Reman 1 and
    Reman 2 are now similar.





o Panel: requirement met

#### **Editorial Comments**

- See comments included in the track changes in Life Cycle Analysis Results: Davies Results document.
- See additional editorial/grammatical comments in tracked changes of *Life Cycle Analysis Results: Davies Results* document, dated October 7, 2016.
- Panel: editorial comments appropriately addressed



### 12. Critical Review Letter of Compliance

November 29, 2016

Allen Luccitti Golisano Institute for Sustainability Center of Excellence for Sustainable Manufacturing Rochester Institute of Technology RE: Panel review of Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir® office system at Davies Office, Inc. to an OEM office system.

Dear Mr. Luccitti,

The Golisano Institute for Sustainability conducted a life cycle assessment comparing a remanufactured Steelcase Avenir® office system to an OEM office system. The New York State Pollution Prevention Institute at RIT was asked by GIS to chair a peer review panel of the GIS report to ensure conformance with ISO 14044 for a life cycle assessment comparative assertion with the intent to disclose the results to the public. The peer review panel consisted of three members: Dr. Anahita Williamson; Thaddeus Owen, Sr. Engineer, Sustainability, Herman Miller and Owner OTEC LLC; and Roy Green, HBF & Gunlocke. The LCA report was provided to the panel for review to determine if:

- The methods used to carry out the LCA are consistent with ISO 14040 and 14044
- The methods used to carry out the LCA are scientifically and technically valid
- The data used are appropriate and reasonable in relation to the goal of the study
- The interpretations reflect the limitations identified and the goal of the study
- The study report is transparent and consistent

The panel reviewed three versions of the report and provided GIS with comments regarding assumptions, data sources, interpretations, limitations and transparency of the report. The intent was not to re-do the life cycle assessment or independently validate input data, particularly that from other sources. The panel made recommendations for further work that would address unknowns and issues raised by the review. GIS responded to those comments through subsequent iterations of the report and comment cycles. The final version of the report, titled *Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir® office system at Davies Office, Inc. to an OEM office system* and dated November 16, 2016 is ISO 14044 compliant.

The panel contends that GIS has satisfactorily addressed the substantive and editorial issues raised in the draft LCA reports. The analysis and report follow accepted LCA principles and methodologies and follows the ISO 14040 and 14044 standards. The analysis used accepted commercially available software to perform calculations and retrieve data that was not available.

The panel reviewed the data used in the study and found that appropriate and reasonable data sets were used in relation to the goal of the study. Furthermore, interpretations of the results reflect the assumptions and sensitivity analyses performed in the study.

This letter, along with the Panel review of Life Cycle Assessment Results: Comparison of a remanufactured Steelcase Avenir® office system at Davies Office, Inc. to an OEM office system which summarizes the panel's review comments and practitioner responses, must be included in the final LCA report, as required by ISO 14044.

Kate Winnebeck, LCACP Senior Environmental Health and Safety Specialist